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SUMMARY

This report considers the problem of modeling continuous atmospheric
turbulence for the purposes of aircraft design. The discussion is limited
to the fepresentation of turbulence by three stationary, independent sto-
chastic: processes which are physically interpreted as the longitudinal,
lateral, and vertical gust components at the vehicle center of gravity.

The gaussian model now in wide.use is reviewed. A comparison of this:
model with experimental data shows that it underestimates the number of
high veiocity gusts which occur in the atmosphere. Furthermore, : it cannot
reproduce observed velocity increment distributions.

A class of non-gaussian processes is proposed as a turbulence model.
Though previous publications have described the application of this model
to flight simulator work, this report analyzes the model in greater detail,
and is the first publication to apply it to analytical calculations. A
comharison with experimental turbulence data is presented, and it is con-
cluded that the non-~gaussian model is superior to the gaussian model for
the purposes of representing high velocity gusts. However, in the form
presented, the new model does not improve upon the gaussian model in so
far as the modeling of velocity increments is concerned.

The problem of applying the non-gaussian model to the calculation of
vehicle response statistics is investigated. The specific statistics of
interest in this report are the response power spectral density, probabil-
ity distribution, and level crossing frequency. The first of these is
easily handled by well known methods. The calculation of the second and
third quantities, however, requires the development of an eigenfunction -
eigenvalue expansion technique. A numerical example is presented and a

number of computer programs useful for studying the model are included.



INTRODUCTION

The effects of atmospheric turbulence have been a continuing concern
to the aircraft designer since the earliest days of powered flight.
Typical turbulence related problems which must be solved during the design
of any aircraft are:

1) determination of ultimate structural strength required

to sustain peak loads induced by turbulence

2) effects of turbulence on the fatigue 1ife of the structure

3) performance of control systems in turbulence

4) handling and ride qualities in turbulence.

In an effort to provide the designer with some practical means of
solving these and other problems, a number of statistical models of tur-
bulence have been developed over the years. These models attempt to
describe, in terms of as few parameters as possible, those characteristics
of turbulence which are most important for various aspects of the design
problem. Several of the most widely used of these models will be described
below. In general they fall into two complementary classes, discrete and

continuous, both of which are in use at the present time.

Discrete Madels

Historically, the discrete model of turbulence was the first to be
developed beginning with the work of Rhode and Lundquist in 1931 (Ref. 1).
This model was intended to describe only the extreme gusts encountered by
an aircraft over its operational lifetime. Because of its emphasis on
extreme gusts, the discrete model is typically used to estimate ultimate

strength requirements. As its name implies, the discrete model treats
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turbulence as a series of isolated gusts, The principal assumptions used
in deriving the discrete model are (Ref, 2, 3):
1) For purposes of aircraft design, atmospheric turbulence
can be modeled as a collection of isolated gusts randomly
distributed along the flight path of the aircraft.
2) These gusts have random magnitudes but fixed shape.
3) The aircraft is a deterministic linear system with suf-
f{cient damping that each encounter with one of these
discrete gusts results in a single significant response
peak.

Typical responses which may be studied by means of the discrete
mode] are peak structural loads imposed by turbulence, extreme vertical
accelerations of the aircraft, etc. Two discrete gust shapes which have
been employed in the past are a ramp 30.48 meters (100 feet) in length
used in the United Kingdom (Ref. 4) and a one-minus-cosine shape used in
the United States (Ref. 5).

Since the gust shape is fixed and the vehicle is assumed to respond
in a well damped linear manner, the relationship between gust magnitude
and the peak value of response for a given aircraft is simply a constant
of proportionality depending upon the flight condition (i.e., airspeed,
gross weight, altitude, etc.) at the time of gust encounter. Thus, by
recording response peaks and corresponding flight conditions, one can com-
pute the magnitude of the discrete gust which caused each peak. These
magnitudes, known as "equivalent gust velocities," have been extensively
measured for various types of aircraft based on recordings of vertical
accelerations by counting accelerometers, Statistics on the frequency

of their occurrence have been compiled by many authors (e.g., Ref. 6).
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.. The discrete model can be used to predict the responses of a'propoéed
aircraft design by the following method (Ref. 7). First, using the éXper4
imentally determined distribution of equivalent gust velocities and‘the '
dynamic characteristics of. the proposed vehicie, work backward through- the
procedure described above to obtain the distribution of vertical acceler-:
ations for the vehicle. Then assume a factor of proportionality relating
these accelerations to the response magnitude, and finally convert the
distribution of accelerations into the required response distribution.

Even though much data is available on the distribution of equivalent
gusts, the discrete model is not satisfactory for all aspects of the air-
craft design problem. For example, its application in areas such as struc-
tural fatique, control system performance, ride qualities, or even extreme
responses which involve lightly damped modes is highly questionable. The
reason for this is that the assumptions on which the model is based are
seldom realized in practice. In most instances turbulence does not occur
as discrete gusts but as a continuous random disturbance. Furthermore,
the conversion from measured responses to equivalent gust velocities
neglects most of the dynamic characteristics of the vehicle, particularly
the structural modes which tend to be Tightly damped. As a result, success
in calculating the response statistics of a proposed aircraft by means of
the discrete gust model depends largely upon the proposed aircraft having
very nearly the same response characteristics as the vehicle with which the
origiha1 data were collected. Although this fortuitous circumstance may
exist in some cases, it cannot always be assumed. Thus, although the
necessity of evaluating the responses of a proposed aircraft to discrete
gusts is still recognized as an important part of the design procedure

(Ref. 8), the use of the discrete model to calculate most response
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statistics has largely given way in recent years to the use of turbulence
models which attempt to take both the dynamic characteristics of the
vehicle and the continuous nature of turbulence into consideration.
These are known as "power spectral density," "power spectral," or (per-
haps more correctly) "continuous" models. It is this type of model which
is of primary interest in the present report,

i

Continuous or Power Spectral Models

As will be seen shortly, the underlying idea of this type of model
is that atmospheric turbulence can be represented by a continuous stochas-
tic process which acts as a disturbing influence on the vehicle. The
name "power spectral" has frequently been associated with these models
because their development ariginated from studies of the power spectral
density of atmospheric turbulence (Ref. 9). In actuality, these models
involve not only the power spectral density of turbulence, but also an
assumed probabilistic structure which is consistent with the power spectrum.
Hence, to call them "power spectral"” models is to stress one aspect and
neglect the other. Thus, although long usage has firmly established the
name "power spectral” (and indeed the name will often be used in this
report), the reader should be aware that power spectral models incorporate
not only a power spectrum but also a probability structure,

Because a turbulence model will be of little value to aircraft design
if it cannot be used to predict vehicle responses, the type of stochastic
process employed in the model must be one for which it is ppssib]e to
calculate these responses with a minimum of difficulty. Because of this
constraint, it is usually assumed that turbulence can be represented by

a gaussian process. In this report, continuous models which incorporate
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this assumption will be referred to as continuous gaussian'mode1s or

gaussian power spectral models.

Gaussian Power Spectral Models

As mentioned above, power spectral models represent turbulence as a
continuous disturbance. The aircraft is imagined to fly through large
regions of turbulent air. (The adjective "large" is used here to mean
that the time required for the aircraft to pass through one of these
regions is very much greater than the response time constants of the
vehicle.) It is usually assumed that within each region the turbulence
is homogeneous and stationary, and is characterized by intensity and
scale length parameters. More formally stated, the principal assumptions
made in applying this type of model in its most simple form are (Refs.
3, 10):

1) Each encounter of an aircraft with continous atmospheric

turbulence can be modeled as a deterministic linear sys-
tem (the aircraft) perturbed by three independent, sta-
tionary stochastic processes. These processes represent
the longitudinal, Tateral, and vertical gust components
occuring at the vehicle center of gravity as it moves
through the gust field.

2) The power spectral density of each random process belongs
to a family of spectral shapes characterized by two param-
eters, the gust velocity standard deviation (o) and the
gust scale length (L). The scale length is a determin-
jstic function of altitude and the standard deviation

is a random variable which changes for each encounter of
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the aircraft with a turbulent region of air. Within
each turbulent region o is assumed constant. Both L
and o may take on different values for each of the three
gust components.

3) Each of the three gust components is a gaussian process.

The assumptions of the gaussian model make it possible to calculate
the statistics of any vehicle response for each region of turbulence as
functions of the parameters L and o of that region. The statistical
gquantities of most frequent interest are:

1) Power spectral density -~ a description of the magnitude

of the Fourier components present in the response.
2) Probability distribution --a description of the prob-
ability that a given response magnitude is exceeded.
3) Level crossing frequency -- the expected number of times
per unit distance of flight that a given level or response
magnitude is exceeded.
Specific methods by which these guantities can be calculated will be dis-
cussed in a later part of this report; for the present it will merely
be noted that the assumptions of vehicle linearity and the gaussian nature
of turbulence permit their evaluation with a minimum of difficulty. These
results will, as noted above, be dependent upon the assumed values of L
and o along with the characteristics of the vehicle dynamics. Another way
to express this dependence is to say that the response statistics are
“conditioned" on these parameters, Note that under the assumptions of the
model only one of these parameters, o, is random.
The response statistics which are to be expected over the 1ifetime

of the vehicle for a given flight condition (i.e., fixed altitude and
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vehicle dynamics) can be computed by means of the gaussian power spectral
model if the distribution of the random variable ¢ is known. Distributions
of o have been estimated based on extensive measurements of atmospheric
turbulence. However, these distributions are not usually known for all
altitudes of interest. Also, data presented in reference 11 shows that
the scale length of turbulence is actually a random variable even at a
fixed altitude; and the importance of neglecting this effect is not known,
Furthermore, as will be discussed in later sections of this report, there
is much evidence that atmospheric turbulence is not a gaussian process.
As a result, the gaussian power spectral model is not entirely suitable
for calculating lifetime statistics in a purely formal probabilistic man-
ner. The procedures used for this purpose typically combine many of the
ideas of the gaussian power spectral model with the response statistics
of existing aircraft in a method not unlike that used with the discrete
model (e.g., Ref. 12).

The power spectral model is used primarily to evaluate response
statistics for selected flight conditions in continuous turbulence. For
this application both the scale Tength and standard deviation of the
turbulence as well as the vehicle characteristics are fixed at values
representative of flight conditions which could reasonably be expected to
occur in service. Thus the aircraft is imagined to be flying through an
infinitely large region of stationary, homogeneous turbulence. The
response statistics calculated for this case are then examined to deter-
mine whether or not the design is satisfactory. This approach is espec-
ially useful for control, handling, and ride qualities studies; and is the
type of application for which the turbulence model developed in this report

is intended.
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For this restricted usage, sufficient data are available to develop
a much more realistic model, and the three assumptions made above bear
reconsideration. The first assumption stated that atmospheric turbulence
could be represented by three independent, stationary stochastic processes.
Physically, this is equivalent to requiring that: 1) the turbulence is
stationary and homogeneous; and 2) the dimensions of the vehicle are
much smaller than the scale lengths of the three gust components. These
two conditions are, of course, not always satisfied and much research has
been devoted to relaxing them. References 13 through 16, for example,
describe how the power spectral model can be extended to account for such
effects as the spatial distribution of the gust velocity field over the
surface of the aircraft, correlation of the gust components, and the non-
stationarity of the turbulence. Generalizations of this type will not
be considered in this report because of the increased complication they
would introduce. The reader should, however, be aware that such improve-
ments are possible. For the simplified model described in this report the
first assumption of the gaussian power spectral model will be considered
valid.

The second assumption of the power spectral model concerned the
specification of a family of power spectral densities for each gust com-
ponent which depended upon only two parameters, L and g. This assumption
has been investigated at Tow altitude (Ref. 11) and found to be valid if
both 7 and o could be chosen freely for each sample. Representative values
of the scale lengths to be used in the model can be expressed as a deter-
ministic function of altitude by simply selecting the mean L measured at

each altitude. The power spectral shapes usually assumed are those
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proposed by von Karman (Ref. 17) or Dyrden (Ref, 18). Thus at low
altitudes it is possible to satisfy the second assumption,

At high altitudes the validity of this assumption is not so certain,
the problem being made more difficult by a lack of data. Those results
available (e.g., Refs, 19, 20) show that spectra often behave 1ike 9'5/3
over the full range of wavelengths measured, (9 denotes spatial frequency
in radians per meter.) This would indicate that scale lengths are either
very long or nonexistant at these altitudes. In practice this difficulty
might be overcome while retaining the validity of the second assumption
by using the von Karman or Dryden spectra and merely choosing a value of
L longer than the longest wavelength to which the vehicle in question will
respond. The standard deviation could be selected so that the power
spectral density is properly scaled in the range of wavelengths to which
the vehicle does respond.

The second assumption of the power spectral model is thus valid at
low altitudes, but becomes more questionable as altitude increases. The
lack of a scale length at high altitudes may perhaps be overcome by choos-
ing a very long scale length as described above, or the treatment of high
altitude turbulence as a self-similar process in the manner to be des-
cribed below may be another solution.

The third assumption of the power spectral model, that turbulence is
a gaussian process, is known to be incorrect (Refs. 21, 22). Since this
fact is of central interest in this report, it will be discussed in some
detail.

The non-gaussian nature of atmospheric turbulence makes ijtself
apparent in two ways which are of importance to aircraft design. Compared

to a gaussian process, turbulence is characterized by:
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1) an increased number of high velocity gusts

2) an increased number of large gust velocity increments.

These two effects will be discussed separately even though they are
obviously somewhat related.

High gust velocities are of importance to aircraft because it is this
type of disturbance which tends to produce significant rigid body motions
of the vehicle. These large gusts displace the vehicle from its equilib-
rium flight path, disconcerting the passengers and reéuiring the pilot to
take corrective control action. As mentioned above, experimental data
indicates that the gaussian turbulence model significantly underestimates
the frequency of occurrence of these high gust velocities.

Reference 23 reports the examination of a large number of turbulence
samples, each recorded at low altitude over a flight path distance of
approximately 37 kilometers. The average number of velocity peaks in
each sample was found to be 495, while the magnitude of the highest peak
in each sample was consistently found to be greater than five times the
standard deviation of the sample. This frequency of occurrence of such
high gust velocities is several orders of magnitude greater than predicted
by the gaussian assumption. Furthermore, peak gust velocity cumulative
probabilities of exceedance observed in atmospheric turbuience (Refs. 11,
24) behave Tike exp( -z) rather than exp( -z?) as predicted by the gaussian
assumption. This again indicates a serious underestimation of high velocity
gusts by the gaussian model.

The second non-gaussian characteristic of atmospheric turbulence which
is important to aircraft design is the occurrence of a greater number of
large gust increments than predicted by the gaussian model. The increment

of a process u(t) is defined to be a running difference of the form
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u(t) - (£-t), where T is the constant time lag of the increment.
Increments of «(¢) are necessarily gaussian if » itself is gaussian.
Note that a large increment is not necessarily associated with high
values of u(t), only large changes of value, Large velocity increments,
especially with short time lags, are of importance in causing Toads on
the aircraft structure because they contain high frequency components
which tend to excite the elastic modes of the vehicle while having a
minimal effect on its gross motions. Published evidence (Refs. 22, 25,
26) indicates that the gaussian model underestimates these large incre-

ments,

Gaussian Patch Model

The data described above which indicate that atmospheric turbulence
is non-gaussian are t&pica]]y composed of time histories recorded over
a flight path distance of more than 30 or 40 kjlometers. The apparently
non-gaussian characteristics of these data which have been discussed
above are sometimes explained within the framework of stationary gaussian
processes by introducing a slightly modified form of the gaussian
power spectral model known as the "quasi gaussian" or "gaussian patch"
model (Ref. 21). The central idea of this model is that long, apparently
non-gaussian samples of turbulence can be divided into a number of
shorter gaussian segments with different intensities. The assumptions
on which this model is based are the same as those of the conventional
gaussian model described above, except that now each encounter of the
aircraft with a large region of turbulence is imagined to be a number of
encounters with smaller, independent patches of stationary, homogeneous

turbulence. Though these patches are smaller than the turbulent region
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which they make up, they are nevertheless still assumed to be large in
the sense that the vehicle response can be assumed stationary within each
patch, and transient effects between patches can be neglected. The

scale length of the turbulence in all patches is assumed to be the same,
but the intensity is allowed to vary randomly from patch to patch. This
random intensity is usually restricted to only two discrete values (Ref.
27), although more values can be admitted if required.

Because of the above mentioned assumptions, the order in which the
vehicle encounters patches of differing intensities is immaterial, and
all nonstationary effects can be neglected insofar as vehicle responses
are concerned. Thus the response of an aircraft flying through a large
region of turbulence is assumed divisible into a number of shorter,
independent time histories, each of which is stationary and gaussian.

The intensity of each of these shorter response time histories corres-
ponds to one of the two discrete values of turbulence intensity which are
allowed.

Under the assumptions of the gaussian patch model, measurements of
the gust velocity and response standard deviations based on time averages
over very large turbulent regions are invaiid because the assumption
of stationarity (and therefore ergodicity) is incorrect for time histories
involving more than a single patch. For example, the turbulence intensity
estimated by time averaging would be a weighted average of the true inten-
sities which were encountered, Given that the patch model is correct, it
is possible to estimate the true patch intensities by a simple curve fit-
ting technique based on measured level crossing frequencies (Ref, 27).

The important result of assuming the gaussian patch model to be

correct is that probability distributions and level crossing frequencies
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measured in large (30 km or larger) regions of turbulence will not
appear gaussian because they will be based on samples from gaussian
processes with differing intensities. If the gaussian patch model could:
be shown to correctly explain the non-gaussian characteristics of atmos-
pheric turbulence it would greatly simplify the aircraft design problem
because the conventional gaussian model described previously could still
be used to model encounters with single patches of turbulence, and
encounters with multiple patches could be described in termns of ensembles
of stationary, independent gaussian processes, Thus the gaussian patch
model would allow the apparently non-gaussian characteristics of atmos-
pheric turbulence to be modeled without recourse to a non-gaussian turbu-
lence model. Furthermore, responses of vehicles to the model could be
expressed as collections of stationary gaussian processes and would
therefore not require a nonstationary analysis.

Unfortunately, evidence indicates that the assumptions of the patch
model are incorrect. Reference 27, for example, has examined the patch
length implied by this model, and concluded that the most intense patches
are only two or three kilometers in length. Because these patches are
so short, the assumption of stationary vehicle responses becomes very
questionable. This problem will be discussed in greater detail in a
Jater section of this report.

It will also be shown later in this report that, if the assumptions
of either the gaussian or the gaussian patch models are correct, then the
standardized density function of the turbulence increments must be iden-
tical to that of the turbulence itself and independent of the time lag
(at least for small time lags). However, references 22, 25, and 26

present data obtained at altitudes from sea level to 18,000 meters
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(60,000 feet) showing that this is not the case, particularly at low
altitudes, Thus it appears that neither the gaussian model nor the
gaussian patch model can account for the frequent occurrence'of Targe
velocity increments in atmospheric turbulence. |

To summarize the above comments, it appears that the first assump-
tion of the gaussian power spectral model, regarding the.representation
of turbulence as a three component stochastic process, has been Heavi]y
researched and many improvements have been made. These poésib]e imﬁrove-‘
ments will not be considered in this report because of the increased com-
plication they would introduce. The second assumption, regarding the
use of a family of power spectral densities dependent only on the vari-
ables L and o appears to be valid at Tow altitudes and can very probably
be used at high altitudes for the purposes of modeling flight through
turbulence. The third assumption, concerning the representation of
atmospheric turbulence as a gaussian process, is not correct; and
attempts to remedy the situation by introduction of the gaussian patch
model do not appear to be justified.

Thus research on the subject of a non.gaussian turbulence model is
a promising area in which to make a significant improvement in aircraft
design procedures. The remainder of this report will concentrate on

this aspect of turbulence modeling.

Associated Current Research

The only other current work in this area to the author's knowledge
is that due to Jones (Refs. 3, 28) who is developing a model of turbu-
lence based on the concept of turbulence as a self-similar process in

the sense of Mandelbrot (Refs. 29, 30, 31). A process u(t) is self-similar
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if it has the property that transformations of the form & u(nt) (for any
value of % and some fixed value of k) do not change its statistical
properties.

Two important implications of self-similarity from the standpoint of
turbulence modeling are:

1) a self-similar process has an intermittent strhcture.

2) the power spectral density of a self-similar process must
behave 1ike @™V for all 2, where v is related fo'the coﬁj v
stant k of the self-similar transformation,

The first of these is an observed characteristic of atmospheric tur-
bulence (e.g., Ref. 32) and is a very desirable property of a turbulence
model. The second characteristic is not true of Tow altitude turbulence
but, as described above, is easier to justify at high altitudes where
measurements of power spectra have indicated just such behavior.

In reference 28, Jones has suggested a discrete model of turbu-
lence which employs both random magnitudes and random lengths of the.
assumed gust shape. These two variables are related so that the level
crossing frequency exhibits a distribution of the form exp( - x)/x ,
which is reasonably consistant with observed level crossing data. This
discrete model is proposed as a means of investigating the well-damped
modes of the vehicle response.

Jones also discusses the possibility of a power spectral model of
atmospheric turbulence which utilizes the idea of self-similarity. This
model is essentially the gaussian patch model discussed above, but the
self-similarity assumption is used to derive a relationship between
patch length and patch intensity such that the extreme gust velocities of

the model exhibit a level crossing frequency of the form exp( -z)//x.



_ 17
Again this form is consistent with observed data. Jones proposes the
self-similar power spectral model as a means of investigating lightly

damped modes of the aijrcraft response.

The Non-Gaussian Model

The turbulence model proposed in this report, uniike that of Joneﬁ,‘
will consider all modes of the aircraft response simultaneously, and
will apply to turbulence with finite scale lengths. The‘principal pur-
pose is to provide a non-gaussian turbulence model for use in represent-
ing typical encounters of aircraft with continuous atmospheric turbulence.

The research reported here is an extension of that published in
references 33 and 34, which have described the development and app]icd-
tion of a "patchy" non-gaussian turbulence model for use in flight simu-
lators. The contribution of the present report is the further analysis
of this model and the development of analytical techniques for app]yiné
it to vehicle response studies.

Since the present problem is more difficult than that discussed
in references 33 and 34, the model treated in this report has been
simplified to consider only the three gust components acting at the
vehicle center of gravity. Reference 34 indicates at least one technique
which can be used to expand this model so as to include the effects of |
gusts distributed over the surface of the vehicle.

The non-gaussian model proposed here differs from the gaussfan
power spectral model described previously in that it assumes atmospheric.
turbulence to be modeled by a certain class of stochastic processes
which are, in general, non-gaussian. Since this class contains gaussian

processes as a subclass, it follows that the proposed model is not



18

entirely distinct from the gaussian model, but can be viewed as a

generalization which includes the gaussian model as a special case.

(The name "non-gaussian" applied to this model is perhaps too general

since the model is restricted to only a subclass of all non-gaussian

processes., However, this name is conveniently short; and within this

reporf there is no danger of confusion.)

The principal assumptions of the non-gaussian model as it is des-

cribed here are (compare with those of the gaussian model above):

1)

2)

3)

Each encounter of an aircraft with continuous atmospheric
turbulence can be modeled as a deterministic Tinear system
(the aircraft) perturbed by three independent, statistically
stationary stochastic processes. These processes represent
the longitudinal, lateral, and vertical gust components at
the vehicle center of gravity as it moves through the gust
field.

The power spectral density of each random process belongs

to a family of spectral shapes characterized by two param-
eters, the gust velocity standard deviation (o), and the
gust scale length (L). The scale length is a deterministic
function of altitude and o is a random variable which changes
for each encounter of the aircraft with a turbulent region
of air. Within each turbulence region o is assumed constant.
Both L and o may take on different values for each of the
three gust components.

Each of the three gust components is a non-gaussian process
of the form u(t) = a(t) b(t) + e(¢) , where a, b, and ¢ are

independent, stationary gaussian processes.
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The probability structure of the proposed model is implicit in the

third assumption.
OQutline of Report

The remainder of this work is divided into eight sections and an

appendix. The principal topics treated in each section are:

Review of the Gaussian Model. Equations describing the gaussian power
spectral model and its applications to vehicle response calculations
are reviewed. This section also defines several statistical quan-

tities which are used throughout the remainder of the report.

Validity of the Gaussian Model. This section shows that the assumption

of a gaussian process is inconsistant with measured turbulence data.

Formulation of the Non-gaussian Model. The general ideas leading to the

non-gaussian model proposed in this report are presented.

Analysis of the Non-gaussian Model. The specific form of the turbulence
model is developed along with expressions for the power spectral
density, probability distribution, and level crossing frequency
of the model. The increment distribution of the model is also dis-

cussed.

Validity of the Non-Gaussian Model. This section presents probability
distributions and level crossing statistics obtained for various
low altitude flight conditions, and compares these with statistics

predicted by the gaussian and non-gaussian models.
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Ca]cu]étion of Non-Gaussian Response Statistics. Methods for calculating
. the power spectral density, distribution function, and. Tevel cross-
ing frequencies of aircraft responses to the non-gaussian. turbulence

model are developed.

Numerical Example. An example is presented showing the ca]cu]ation of
power spectral density, distribution function, and level crossing

frequencies of the altitude error allowed by a simple autopilot.

Conclusions and Suggestions for Further Research. A brief summary of
results is presented along with descriptions of a number of areas
in which additional research is needed if the model described here

is to become a useful tool for aircraft design.

Appendix A: Computer Programs, Listings and sample cases are presented
for a number of computer programs used in working with the non-

gaussian turbulence model.

Appendix B: Tabulated Functions. Tabulated values of the probability
density, probability distribution, and level crossing frequency

of the non-gaussian model are presented.



REVIEW OF THE GAUSSIAN MODEL

The gaussian model considered in this section is intended to repre-
sent. large regions of homogeneous and stationary turbulence. The three
principal assumptions on which it is based are:

1) Each encounter of the aircraft with continuous atmospheric

| turbulence can be modeled as a determfnistic linear sys;

tem (thé aircraff) perturbed by three_independent station-
;ryrgtbchaﬁtié pfocess. These processes represent the
lTongitudinal, lateral, and vertical gust components at

the vehicle center of gravity as it moves through the

gust field.

2) The power spectral density of each random process belongs
to a family of spectral shapes characterized by two param-
eters, the gust velocity standard deviation (o) and the
gust scale length (Z). The scale length is a determin-
istic function of altitude and the standard deviation is

- a random variable which changes from encounter to encounter.

3) Each of the three gust components is a gaussian process.

Also, the statistical quantities of major interest to aircraft design are:

1) power spectral density

2) probability distribution

3) 1level crossing frequency.

The purpose of this section is to familiarize the reader with the defini-
tions and notation of this report as well as to acquaint him with the
turbulence model which is now in wide use. The following discussion will

show how the statistical quantities 1listed above may be calculated first
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for the gaussian model itself and then for the response of a Tinear sys-
tem to the model. In addition, a result concerning the distribution of
gust velocity increments and a simply physical interpretation of the

model will be presented.

Power Spectral Density of the Turbulence Model

Two forms of power spectral densities are presently in common use,
those proposed by von Karman (Ref. 17) and those by Dryden (Ref. 18).
These spectra are compared in figure 1 below. The von Karman spectra
(Egs. 1, 2, and 3) are known to provide a more accurate representation
of measured turbulence spectra because they properly model the 9'5/3
behavior observed at high frequencies (Refs. 11, 35). However, the
fractional exponents present mathematical difficulties which are avoided

by use of the Dryden spectra (Eqs. 4, 5, and 6), The Dryden spectra will

be assumed in this report.

lateral and
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. components
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Figure 1.--Comparison of von Karman and Dryden power
spectral densities. The Dryden spectra are assumed
in this report,
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The reader should be aware that these are "two sided" spectra
defined for both positive and negative values of 2. The standard dev-

iation of each gust component is given by an expression of the form

[e o]

o? = [ a(Q) do - (7)

-00
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Probability Distribution of the Gust Velocity

The model discussed here is gaussian by definition, thus each compo<"

nent -has a conditional probability density function of the form

—aEeel-g(HH. @

plz|o) =
o(2w

The notation (+|o) is used here to indicate the dependence or "condition-
ing" of the density function upon o. In general, the o in equation 8
corresponds to the o's appearing in equations 4 through 6 above, and is
different for each gust component. Figure 2-a below shows a graph of this
density function for positive values of =x.

An equivalent description of the gust velocity probability distribu-
tion is given by the distribution function. The distribution function is

related to the density function by integration.
£
Palo) = | ply]o) dy (9)

Figure 2-b shows the gaussian distribution function plotted on a probabil-

ity scale. Note that it is a straight line on this scale,

b) distribution

a) probability /
4 density .9999 function
.3 .Qg
T 2 L
3 C :
o " Ao
0 ' .0001
o 1t 2 3 -4 -2 0 2 4
.'E/O' -’L‘/O'

Figure 2.--Probability density and distribution functions
of the gaussian turbulence model.
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It will be of interest later to determine the distribution which
would be obtained by .combining data from a number of samples of the
gaussian turbulence model. Note that the density function, equation 8,
depends only on the standard deviation of the gust velocity. Thus, if
the probability distribution of o is known, the average or unconditional

density function of the gust velocity can be found by integration
plx) = Jp(mly)pc,(y)dy. ()
0

It should be noted that p(x) is not a gaussian density.
In order to conform to conventional usage, the gust velocity distri-
bution function for a number of data samples will be expressed as a com-

plementary distribution of the absolute value of the gust velocity
Y
Plz) =1 - j ply) dy. (1)
-

°(xz) is the probability that the absolute value of the gust velocity is
greater than x, and will be referred to as the cumulative gust velocity
distribution in this report. The reader should be aware that P° decreases

monotonically even though the term "cumulative" is used to describe it.

Level Crossing Frequency of the Gust Velocity

The level crossing frequency of a gaussian process is given by the
well known result due to Rice (Ref. 36). Rice's equation (divided by 2U
to give the expected number of crossings with positive slope per unit
distance of flight) applied to the longitudinal gust component gives the

following expression for the conditional level crossing frequency.
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o’.
U

v (z|o, ,or,0) = exp[ - ;—(;f;)z] - (12)

&Tun
The quantity oy in this equation denotes the standard deviation of the
first derivative of the u-gust time history, and U is the mean true air-
speed of the aircraft. Similar equations apply to the lateral and ver-
tical components of the model.

A problem arises in the application of equation 12 to the turbulence
model described here because or does not exist for a process with the
Dryden power spectral density (Eq. 4), nor will the analogous standard
deviations exist for the other components of the model. The reason for
this is clear when the relationship between oy and the power spectral den-
sity of » is considered. The theory of continuous stochastic processes

(Ref. 37) requires that

g2 = [? j Q? @uu(sz) asn . (13)
0

But the u-gust spectrum (and for that matter the lateral and vertical
gust spectra) behaves 1ike Q2 for large values of Q. Therefore, the
integral in equation 13 does not converge and s does not exist. This
result stems from the fact that the model has not accounted for viscous
dissipation, which causes the true power spectrum of turbulence to decay
more rapidly for wavelengths shorter than about one centimeter. These
extremely short wavelengths are of no importance when vehicle responses
are being calculated, and are justifiably neglected when the model is

used for this purpose. However, in the next section of this report it
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will be of interest to compare the level crossings of the model to those
measured experimentally, and it is important to show that a level cross-
ing frequency can be defined for the model without altering its character-
istics as far as response calculations are concerned.

In practice this problem is sometimes overcome by truncating the
power spectral densities at some convenient frequency. Another method is
the addition of high frequency poles to the spectral forms as shown in

equation 14 for the u-gust spectrum.

2 +
a (Lu Y,)

U
[+ (2, 22111 + (v, 2)°]

2,,,(@) = (19)

v
These poles can be physically interpreted as representing the effects of
viscous dissipation, and Y, can be thought of as representing the wave-
length at which this dissipation becomes important. As will be seen
shortly, however, the precise value chosen for Y, will not be important
for the purposes of this report.

Using equation 14 for ¢uu allows one to compute the standard devia-

tions required in Rice's equation. In particular,
- -1/2
oy = Uou(YuLU) . (15)

Substitution of this result into equation 12 gives the following result
for ¥
Uu

Nu(mlou oL, 5Y,) =

1,2 2
= exp[ - 5{(5)1 (16)
u 2n(y,, L, 29,

)1/2

Note that the zero crossing frequency is given by
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w0lo, .L ,v) = (2m) ey 2y an

Thus the value of.Yu may be thought bf_as determining the zero crossing
frequency of the u-gust component, and could be chosen so as tb matdh
equation 17 to some measured value.

The addition of high frequency poles to thg vertical and 1§tera1 gust
spectra in a manner similar to that of equation 14 will result in Tlevel
crossing frequencies which differ from equation 16 by only a constant of

proportionality.
v (zlosL,v) =8 (z|lo,L,Y) = (3/2)"/2 N (zlo,L,Y) (18)

Figure 3 shows a typical graph of level crossing frequencies for the

gaussian model,

x/0

Figure 3.--Normalized level crossing frequency
of the gaussian turbulence model.

It will be of interest later in this report to compute the level
crossing frequencies which would be obtained by combining data from a

Targe number of turbulence encounters. These theoretical results can
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then be compared with experimentally measured data to determine the
validity of the gaussian model. In past analysés of this type (e.qg.,
Ref, 23) it is common to assume that the zero crossing frequency is

constant for all data samples. That is,

¥ (0) =7 (0fo, ,L »v,) - (19)

for all values of o, ;Zﬁ ,.and Y, - Thus the Tevel crossing frequency"

for a large number of data samples is
1 .
n,(=) = 5,00 [ el F(Z)7) Py (0o (20)
0

These level crossing curves are typically normalized with respect to
N#(O) in order to obtain what is termed the normalized level crossing
frequency or, perhaps more commonly, the cumulative probability of

exceedance.

expl - 3 (£)?1p (o) do (21)

U

N (x) ) <
o |
Note that this result depends only upon the density function of o, -
Equation 21 was obtained from equation 16 by assuming that
Nﬁ(ol- »* s *) was a constant for all data samples. However, it is
readily verified (and will be proved later in this report, Eq. 111, 112)
that precisely the same conclusion will be reached if it is only required
that 9, be a random variable independent of both Lu and o, - In this
event o, acts only as a scale factor of the process and can have no
influence on the frequency with which it changes sign. Thus Nﬁ(OI- s s e)

need not be a constant, but only a random variable independent of o, -
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Expressions completely analogous to equation.21 can be qbtainéd fof
the vertical and 1ateré1 gust components. Note that these results |
depend only upon the standard deviation of thé gusts. In particular,

the value of y has no effect on the normalized level crossing frequency.

Distribution of Velocity Increments

Consider now the velocity increments of the gaussian turbulence model.
Since identical results will be obtained for all three components, only
the Tongitudinal gusts will be considered here. Define the u-gust incre-

ment to be
Au(t) = u(t) - u(t-1) (22)

Since Au is a linear transformation of a gaussian process, it must be

gaussian. The mean and variance are readily calculated from equation 22.

E{p} =0 (23)

E{Auz} = oA2 = 2[0u2 -Cuu(‘r)] (24)

where c;u is the autocorrelation function of u. Thus the probability
density of Au is given by
1

—qﬁexp[-;—(fg)zl . (25)
o

(x|o,) =
PA\E[Op (2n)

and the average density of Au computed from a number of samples of the

gaussian model with differing intensities would be
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- T 1
pole) - I;A(z—ﬂ)w—z-exp[- F(E) e, (s . (26)

0

| A'relétionshfp“wililhow be derived relating the average density‘of

Au to the average density of u itself. First write S in the form

o, =0, o(t) (27)
where
Cuu(T)
a?(t) = 2(1- —07—] . (28)
Uu

Then the probability density of Op is related to the density of g, by

MOE ;(];Tpoutg‘(’?yl : (29)

Introduce the change of variable ¢” = o/a(t), substitute equations 27 and
29 into equation 26, and compare the resulting expression with equation

10 to obtain
_ 1 x
PA(x) = mpu[a—(ﬂ-] . (30)
Now define the standardized density function to be
plx) = op(ox) (31)

and note that the average‘standard deviation of Au is related to the

average standard deviation of o, by
E{GA} = a(T) E{Ou}. (32)

It then follows from equations 30, 31, and 32 that
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Equation 33 implies that the standardized density funcffon of Au is
jdentical to that of » itself, and this result is independent of both

the time lag t and the distribution of a, .

Power Spectral Density of Vehicle Response
The power spectral density of some response r(t) of a stable linear
vehicle to a single component of the gaussian turbulence model is given
by the well known relationship (Ref. 38) written here for the longitud-

inal gust component in terms of the spatial frequency Q.

e () = |E(z UQ)]2¢W(Q) (34)

where H(s) is the transfer function relation the response »(t) to the
input u(¢). Similar expressions hold for the other components of the

turbulence model.

Probability Distribution of Vehicle Response

A linear response to a gaussian input is necessarily gaussian, thus

the density function of any vehicle response »(t) is given by

1 1, x
= ————— expl - 5 (=-)?] (35)
)1/2 2 o,

pr(x) Or(ZW

where a, is obtained from the power spectral density, equation 34, in
a manner similar to equation 7. The distribution function of the response

is given by an expression analogous to equation 9.
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Level Crossing Frequency of the Vehicle Response

Since the vehicle response is necessarily gaussian, the level cross-
ing frequency must—Be given by equation 12. In the case of a stable air-
craft, the parameter y introduced in the above discussion of the gust
velocity.level crossings need not be used because the vehicle will act as
a low pass filter and the derivative of the response will always exist.
The level crossing frequency of a vehicle response r(t) to the u-gust
component of the turbulence model is thus given by

= _r iz oy
N;(xlcr, 05) - 2w0r expl 2 (Or) 1, (36)

here o, and o, are determined from the power spectral density of the
response (Eq. 34) by means of equations 7 and 13 respectively. Entirely
analogous relationships hold for the lateral and vertical components of

the model.
Physical Interpretation of the Gaussian Model

Each component of the gaussian turbulence model can be interpreted

as wide band gaussian white noise passed through a Tinear filter as shown

in figure 4.
n(#) u(t) r(t)

Y i(s) simulated i,(s) vehicle
wide band shaping turbulence vehicle response
gaussian filter

white noise
source

Figure 4.--Physical interpretation of a single component
of the gaussian turbulence model and the response
of a vehicle to this model.
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The white noise source is assumed to generate gaussian noise with a
power spectral density of unity over the range of frequencies passed

by the shaping filter and the vehicle transfer function. That is,
¢nn(9) = 1.0 (37)

The shaping filter transfer function is determined by means of equation
34 and the required turbulence power spectral densities discussed at

the beginning of this section (Eqs. 4, 5, or 6).



VALIDITY OF THE GAUSSIAN MODEL

The gaussian turbulence model described in the previous section will

now be compared with some experimentally measured gust statistics. It

will be shown that neither the gaussian nor the gaussian patch turbulence

model is able to reproduce these statistics.

Specific results to be presented are:

1)

2)

3)

4)

5)

comparison of the gaussiah probability distribution with
gust velocity distributions estimated from single time
histories of atmospheric turbulence

comparison of gust velocity distributions predicted by
the gaussian model with distributions estimated from a
Targe number of independent time histories

comparison of cumulative probability of exceedance dis-
tributions predicted by the gaussian model with distri-
butions estimated from a large number of independent data
samples

discussion of patch sizes implied by the gaussian patch
model

comparison of measured velocity increment probability
distributions with distributions predicted by the

gaussian patch model.

Gust Velocity Distributions Estimated from Single Samples

Figure 5, originally published by Dutton (Ref. 21), presents esti-

mated gust velocity distributions from two independent sources. In each

case the gaussian distribution is indicated by a solid line. The curves
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Figure 5.--Comparison of the gaussian turbulence model
with gust velocity distributions estimated from single
turbulence time histories.

on the left show three samples of the vertical gust component measured by
G. K. Mather of the Canadian National Aeronautical Establishment (Ref. 39).
These data were obtained at an altitude of approximately 9,000 meters
(30,000 feet) over the Sierra Nevada mountains. The graphs on the right
of figure 5 are from a single sample of severe turbulence encountered at
an altitude of 18,000 meters (60,000 feet) during Project HI-CAT (Ref. 40,
run number 264-16) sponsored by the United States Air Force. The numbers

1, 2, and 3 denote the vertical, lateral, and longitudinal gust components
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respectively. The data of figure 5 clearly depart from the gaussian dis-
tribution at both small and large gust velocities, |

It must be pointed out that these results alone do not disprove the
hypothesis that atmospheric turbulence can be modeled as a locally
gaussian process. Another possible explanation of the behavior illus-
trated in the figure is that the time histories from which the data were
derived contained patcheé with differing intensities. This interpretation
would agree with the gaussian patch model discussed in the introduction of
this report. Further remarks regarding this model will be found in the

fourth and fifth parts of this section. i

Gust Velocity Distributions Estimated from Many Samples

Figure 6 presents two vertical gust velocity cumulative distribu-
tions obtained during the United States Air Force sponsored Project

LO-LOCAT (Ref. 11). The data on the left were obtained during 5,000

100 ! 4 T ] 100 t v T Y T ]
-1 LO-LOCAT 4 -1 LO-LOCAT J
10 data T 10 data .
= category . category 4
10 123800 1 107 423000 1

EE 107 : EE 10™ j
w10 {1 %2100 ]
107 . 105 ]
10-6 gaussian . 106 gaussian 4
model i model y
10” — : 10—\
0 5 10 15 20 o 2 4 6 8 10
gust velocity (m/sec) gust velocity (m/sec)

Figure 6.--Experimentally measured cumulative gust velocity
distributions of atmospheric turbulence compared
with those of the gaussian model.
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kilometers- (3,122 miles) of flight over high mountains at an averageé
altitude of 230 meters (750 feet) above the surface in a neutrally stable
atmosphere (data category 123000). The data on the right were collected
during 2,000 kilometers (1,248 miles) of flight over b]ains at an alti-
tude of 230 meters (750 feet) in neutrally stable conditions{data cate-
gory 423000). In both cases the distribution predicted by the gaussian
model has been calculated using equation 11 and the measured probability
distributions of the standard deviations for each data category presented
in reference 11. Note that in both cases the cumulative distribution
estimated using the assumption of a gaussian process underestimates the
occurrence of high’gust velocities by substantial factors. Again, it
should be pointed out that the apparently non-gaussian behavior of the

data shown in figure 6 could be explained by the gaussian patch model.

Level Crossing Frequencies Estimated from Many Samples

Figure 7 presents two cumulative probability of exceedance distri-

butions obtained during the LO-LOCAT project (Ref. 11). These data were

lw [ 4 L LS J 100 . ¥ L] 1§ J

1 LO-LOCAT -1 LO-LOCAT
107 data 1 10 data 1
10~ category 10~ category

123000 7 423000

L

S 10~ y .
10~ . 1 105 . .
108 *Toder ] 108 Todel
0o 5 10 15 20 003 4 6 8 10
gust velocity (m/sec) gust velocity (m/sec)

Figure 7.--Experimentally measured cumulative probability of
exceedance distributions of atmospheric turbulence
compared with those of the gaussian model.
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derived from the same time histories which produced the data of figure 6,
and a more detailed discussion of the test conditions will be found in the
text describing that figure. The data on the left are from data category
123000 and those on the right are from catégory 423000, The distribution
based on the gaussian model was derived using equation 21 and the distri-
butions of gust velocity standard deviation presented in reference 11.
Again the results:based on the stationary gaussian turbulence model sig-

nificantly underestimate the occurrences of high gust velocities.

Patch Sizes Implied by the Gaussian Patch Model

Figures 5, 6, and 7 have shown typical experimental observatiens
which indicate that the stationary gaussian model underestimates the
occurrences of high gust velocities. This apparently non-gaussian behav-
ior can still be explained in terms of stationary gaussian processes by
means of the gaussian patch model which was described in the introduction
of this report.

If this model is a valid representation of atmospheric turbulence,
the stationary gaussian model will provide a good representation of
each turbulent patch and therefore will be a good model for aircraft
design work., There is, however, evidence which indicates that the
gaussian patch model is not valid.

A study of the patch size implied by the gaussian patch model carried
out by Gould and MacPherson (Ref. 27) found that the more intense (and
therefore the more important) patches are so small as to require a non-
stationary analysis for vehicle response calculations., Figure 8 shows
the relationship between patch size and intensity taken from reference

27. Intensity is measured in terms of vertical acceleration rms g's of
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the test aircraft. Note that patch size decreases rapidly with increas-
ing intensity, and that the most intense patches are only twb to three
kilometers in length. An aircraft cruising at 200 m/sec true airspeed -
would pass through one of these patches in only 10 to 15 seconds. This
interval is easily of the same order of magnitude as the significant
response time constants of most vehicles, and encounters with such short
disturbances would necessarily require a nonstationary analysis. It ié
also quite possible that the state of the vehicle at the time of initial
entry into such short patches may have a significant effect on the
response statisticé, a result which would greatly complicate the analysis

because the independence of patches could no Tonger be assumed.

30 L) L 1] L} L
- \ hilly -
E lakeland
= 20+ terrain 9
[ ]
N
»
S 10f flat .
o terrain

0 L [ L L L
0 .1 2 .3 .4 .5 6

intensity (rms g's)

Figure 8.--Patch sizes implied by the gaussian
patch model of atmospheric turbulence.

Thus, even though the gaussian patch model can explain the results
shown in figures 5, 6, and 7, figure 8 indicates that the assumption of

large patch sizes required to justify a stationary analysis of vehicle
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responses is not valid. In addition to these results, the distribution
of gust velocity increments provides further evidence that the gaussian

patch model is invalid.

 Distribution of Gust Velocity Increments -

Figure 9,.taken from réference 24, shows comparisons of gust velocity
probabiiity qensitjes with_gdrrésponding Ve1ocity increment.density func-
tions. fhe solid iihé in each graph is the gauséfan distributioﬁ and the
dashed 1lines indicate the limits of the original data whfch can be found
in reference 24. Each graph is based on several tihe histories which were
chosen for their stationary character. In all cases theedensity functions
have been standardized as defined in equation 31. The data on the left of
the figure were obtained during the HI-CAT program (Ref. 40). The center
graphs show data collected during flight through severe storm turbulence
(Ref. 41). The data on the right were obtained at low altitude during

the Barbados Oceanographic and Meteorological Experiment (Ref. 42). In

qust
velocity
o p(z|o)

velocity
increment
op(x|o)

x/o

Figure 9.--Comparison of experimentally measured gust velocity
distributions (top) with corresponding gust velocity
increment distributions (bottom).
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each case it is readily apparent that the increment distribution is not
only non-gaussian but also quite different from the corresponding ve]écity
distribution. |

In the preceding section of this report (Eq. 33) it was shown that,.
if turbulence could be described as a collection of stationary gaussian
patches, the standardized densities of the gust velocity and its incre-
ments were necessarily identical. Figure 9 clearly shows that this is
not the case. Therefore, representation of atmospheric turbulence as a
gaussian process is incorrect. Additional data presented in references
22 and 25 confirm this conclusion and also indicate that the gaussian

model underestimates the occurrence of large gust increments.

Summary

This section has presented comparisons of the gaussian model with
experimentally measured turbulence data from several independent sources.
Examples of the gust velocity distributions and level crossing frequencies
have indicated that the stationary gaussian model underestimates the
occurrences of high gust velocities. The gaussian patch model, which
could explain this behavior in terms of stationary gaussian processes, is
not well suited to vehicle response calculations because it requires a
nonstationary analysis of the most intense turbulence patches. It has
also been shown that the distribution of velocity increments measured in
turbulence is different from the distribution of velocity itself, a char-
acteristic of turbulence which cannot be explained by the gaussian patch
model. This last result constitutes a proof that neither the stationary
gaussian nor the gaussian patch model is actually representative of the

true structure of turbulence,
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FORMULATION OF A NON-GAUSSIAN TURBULENCE MODEL
The preceding section has indicated that the gaussian turbulence
model is not well suited for vehicle design work because it underestimates
the occurrences of both high gust velocities and Targe gust increments.
It is the purpose of this section to propose a noﬁ-gaussian turbulence
model, and discuss the general line of reasoning leading to its formula-
tion. Only a brief description will be presented hefe since.a detailed

analysis will be given in the following section.

The kK, Model

The ideas which led to the turbulence model proposed here originated
with the work of reference 33. The purpose of that report was to develop
a "patchy" model of atmospheric turbulence for use with flight simulators.
It is known that the gaussian model, generated by the system of figure 4,
does not produce a realistic simulation of flight through turbulent air.
Pilots complain of a lack of patchiness in the simulated turbulence (Ref.
43, 44). These patches are not associated with long term nonstationary
changes of intensity in the sense of the gaussian patch model described
previously, but are short bursts of activity which are sometimes only a
few seconds in length,

No quantitative description of this type of patchiness has been
given, but a qualitative measure can be obtained by observing the deriv-
ative of a turbulence time history. The top portion of figure 10 shows
a comparison of derivatives from a sample of actual atmospheric turbulence
and from the gaussian model. The gaussian time history was generated as
shown in figure 4 and its power spectral density was chosen to match that

of the actual turbulence as closely as possible. Observe that the



44
derivative of the true turbulence contains distinct bursts of activity

which are totally lacking in the gaussian time history.

- -

gaussian ,

T model - - DA I
true

turbulence ™ i "“*WWMW

non-gaussian
model (B = 1.0)

K, model bt (oA b b i

Figure 10.--The derivative of an atmospheric turbulence sample
compared with derivative samples from several turbulence models.
Sample length for these data is approximately 11 kilometers.

Reference 33 has suggested a product of independent gaussian processes
as shown in figure 11 as a model of patchy turbulence. One of the two
processes, say a(z), can be imagined to represent a continuous gaussian
time history without patches while b(¢) represents a modulating or "patch

inducing" function. Reference 33 shows that the filter transfer functions

na(t) al(t)

a a1 ] multiply u(t)
n (¢) ; imulated
W b Hb(s) simulate

b turbulence

b(¢)
wide band shaping
gaussian filters
white noise
sources

Figure 11.--Product of independent gaussian processes
which has been suggested as a model of patchy turbulence.
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Ha and H, can be chosen so that the simulated turbulence time history:
has thé Dryden spectral forms (Eq. 4, 5, or 6). The probability density
of the simulated turbulence is proportional to a modified Bessel function
of the second type and order zero, X . For this reason the turbulence
model represented by figure 11 is called the K, model, Figure 12 presents
the probability density and distribution of this model along with those of

the gaussian model.

-6 Im
as .99
— 04 -9
=3 —
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Figure 12.--Probability density and distribution functions
of the X, turbulence model compared with those
of the gaussian model.

A comparison of figure 12 with figure 5 on page 36 shows that the
Ko distribution departs from the gaussian distribution in a manner similar
to that of actual turbulence. That is, the X, model is characterized by
more small and large gusts than the gaussian model. However, it appears
to be more severely non-gaussian than indicated by the experimental data.
The patchy characteristics of the X, model are shown at the bottom
of figure 10. Note tha* they are much more severe than indicated by the

true turbulence time history.
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_ ‘The Non-Gaussian Model

The fact that the X, and gaussian models seem to "bracket" thé char-
acteristics of atmospheric turbulence led, in reference 34, to the join-
ing of these two models as shown in figure 13, For want of a better name
this combination is called simply the non-gaussian turbulence model. - It
will be shown in the next section of this report that it is possible to
choose the transfer functions #_, By s and #_ of figure 13 so that the
time histories e(¢) and d(z) have identical power spectra]ldensities
of the Dryden form. When this choice is made the simulated turbulence
will also have the Dryden spectral density. Furthermore, this result
will be independent of the parameter & which appears in figure 13. Thus
R does not affect the power spectral density of the non-gaussian model,

it does however influence its probability distribution.

n,(t) a(t)
¥, (2) Ha(s)' multiply ) e(t)
n, (¢ Vi
m, b iy, (s) d(¢) \A+R sum  g(¢)
b(t) simulated
. ne(t) 7 (s) () 1 _ turbulence
e e VI +RZ} n(e)
wide band gaussian 1linear scale
white noise filters factors
sources

Figure 13.--Physical interpretation of a single component of the
non~gaussian turbulence model. A similar interpretation
applies to each of the three components.

To see the reason for this, suppose that the value of R is set to
zero, Then the simulated turbulence will consist entirely of the gaussian
time history, e(t). As R isallowed to increase, more and more of the K,

time history will be used. Finally, in the Timit as the value of ®
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approaches infinity, the simulated turbulence will consist entirely of

the X, process. Thus the parameter R is a control on the probability

distribution and a continuum of distributions between gaussian and X, is.

available.

be obtained.

Figure 14 shows the range of probability functions which can

distribution function

.6y, density function .9999
5 R=o .99 |-
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3 02 VE; ll
™ k=0 o
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Figure 14.--Typical probability distributions attainable using

the non-gaussian turbulence model.

As an indication of the patchy characteristics attainable using the

non-gaussian model, figure 10 includes a sample of the derivative for the

case R equal to unity.

true turbulence sample quite well.

Note that it matches the characteristics of the

Figure 13 is a physical interpretation of the non-gaussian model,

and shows how it can be generated for numerical studies.

The principal

assumptions on which the model is based are the same as those of the

gaussian model, except of course for the probability distribution. These

assumptions are:

1) Each encounter of an aircraft with atmospheric turbu]encé
can be modeled as a deterministic linear system (the air-

craft) perturbed by three independent, stationary stochastic
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processes. These processes represent the longitudinal,
lateral, and vertical gust components at the vehicle
center of gravity as it moves through the gust field,
2) The power spectral density of each random process belongs
to a family of spectral shapes characterized by two param-
eters, the gust velocity standard deviation - (o), and the
gust scale length (£). The scale length is a determin-
istic function of altitude and o is a random variable which
changes from encounter to encounter.
3) Each of the three gust components is a non-gaussian process
of the form u(t) = a(t) b(¢) + e(t) , where a, b, and ¢ are
independent, stationary gaussian processes.
The validity of the first two assumptions has been discussed in the intro-
duction. The power spectral forms chosen for use in this report are those
proposed by Dryden (Eq. 4, 5, 6). The third assumption is, of course, the
central idea of the non-gaussian model. Its validity will be investigated
in later sections of this report as the properties of the proposed model

are compared with those of atmospheric turbulence.



ANALYSIS OF THE NON-GAUSSIAN MODEL

It is the purpose of this section to derive suitable expressions for
the transfer functions used in the non-gaussian model, and to analyze the
model's statistical properties. Specific results to be obtained for each
component of the model are:

1) transfer functions

2) probability distribution

3) level crossing frequency

4) dincrement distribution.
Figure 13 presents the physical interpretation which can be applied to
each of the model's three components. The notation of this figure will
be used throughout the following development. The problem of vehicle
response calculations will not be considered here, but will be taken up

in a later section of this report.

Derivation of Transfer Functions
Recall from the introduction of this report that the turbd]ence
models described here are to have the Dryden power spectral densitiesh
(Eq, 4, 5, 6). It will now be shown that it is possible to choose the
filter transfer functions H& ,Hb , and Hé of figure 13 so that each com-
ponent of the non-gaussian model has the appropriate spectral form. The
method to be followed is:
1) Fourier transform the Dryden spectra to obtain the corre-
sponding correlation functions
2) derive a general expression relating the correlation
function of the non-gaussian model to the filter transfer

functions
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3) assume specific forms for the transfer functions
involving unspecified constants
4) show that the constants can be chosen so that the
correlation function of the non-gaussian model has
the required Dryden form for each component.
In general, the correlation function is related to the power spectral

density through a Fourier transform of the form
o() = j 5(2) exp(2UQT) 49 . (38)

Applying this transformation to the Dryden spectra, equations 4, 5, and 6

gives

¢, (1) =0 %exp(- % 1) (39)

Ult| v
C,p(1) =0 2(1- 57—) exp(- 7+~ |]) (40)

v v

Ult| U

Co(t) = 0 2(1- 5—) exp(- +— I]) . (41)

w w

These equations complete the first step of the transfer function deriva-
tion. A general expression for the correlation function of the simulated
turbulence time history of figure 13 will now be derived. By definition,

this correlation function is
C'gg(r) = Fg(t) g(t+1)} . (42)

From figure 13, g(t) is

g(t) = a(e) b(e)ROV+R2) "% + o(e)(1+R2) "2 . (43)
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Since a, b, and ¢ are independent, zero mean random processes, the cor-

relation function of g(¢) can be written as

-1 -1

ng('r) = Caa('r) cbb(T)R2(1 + R?) + ccc(r)ﬁ +R?) . (44)

Now consider a(t) alone. It follows from the general relationship
between the input and output power spectral densities of a linear system

(Ref. 38) that the spectral density of a has the form

¢ (2) = |E (uQ)|? @nana(n) . (45)

If it is assumed that the power spectral density of the process na(t) is
unity over the range of frequencies for which H& is not essentially zero,
then

2.8 = | (Zua)|?, (46)

The correlation function of a(t) can be found by Fourier transforming

equation 46 as shown in equation 38,
c (1) = J |5 (:02)]? exp(svaT)do (47)

Similar results apply te b(t) and c(t) of figure 13. This result, along
with equation 44 completes the second step of the transfer function deri-
vation.

For the third step of the procedure, suppose that the following

general forms are assumed for the transfer functions of the model.

(48)
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(o) = —2 s ’

H D e——— . .

B (1+D, &)? R (49)
N, +Nss

N (8) = ————— {50)

¢ (1+Dp, s)?

These particular expressions have been chosen because they will lead to
useful results. There is no reason why other general forms could not
be chosen which might also give good results. (See the discussion of
increment distributions in this section and suggestions for further
research in a later section of this report.)

Transforming equations 48 through 50 as shown in equation 47 yields

the following correlation functions.

N2 It

Caa(T) = ETexp(- _D1—) ‘ (5]).

( ) = 13_)2 ﬁz_)z 1 2 + 1 +p Nz 2} |T| 52)

CbbT - (2172 {ITI[(Na -(Dz) ] [D2 2(N3) 1 eXp(" DZ)(
(1) = (55200 1(52)2 - ()21 + [ +0, (22)21) I (53)

ool = g Il )" - () 1+ L) 2 () 1y exe (- ) €

Substitution of these results into equation 44 will give the general form
of the correlation function of the non-gaussian model.
If now the following choices are made for the arbitrary constants in

equations 51, 52, and 53
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L 2L \
Ny = 4o, < N2 = 1.0 Ny =~
2L
1/2
lv,,=o(——}/ gm0 () op =t L (54)
2Lu : Lu
D, = by =3

the resulting correlation functions of the model become
- - — U _
¢, (1) = Cqq(T) = Cég(T) = ou2 exp( - Z;lT!) (55)

which is the form of the u-gust correlation function, equation 39. Note
that not only g(t) but also e(t) and d(t) have the u-gust correlation
function. The following result, which will be useful Tater in this

section, is obtained directly from equation 55 by setting t equal to zero.
0,>=0=0%=g z (56)

If the constants of the filter transfer functions are chosen

to be
- 1/2 - -
N, = o,(128) ( 7 2)? ¥ = 0.0 N, =1.0 |
L 2L
1/2 1/2
Lm0 () m = ( = )/ D= —2 L (57)
2L L
- v - P
D = Dy =7 J

the resulting correlation functions are
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Ult

l .
CoolT) = Cgqlt) + € (1) = 0, 2(1~ o ) exp( - 7_}’; ) . (58)

This is the desired form of the lateral gust corre]ation function,
equation 40. Again, the time histories e(z), d(¢) dnd g(t) all have the

same correlation function and
= = = 2 ; B
o o4 o g.c., (59)

Finally, if the constants are chosen to be

L
- 1/2 (Twy2 - -
n, = o (128) (7) v, = 0.0 y, = 1.0
L 3L 3 2L
- wyl/2 _ w y1/2 _ e
N, =0, —U—) N, = "w(_a—) D, = — (60)
2Lw Lw
D, = by =7
the correlation functions are
' _ i o, ult| u
CEC(T) = Cad(T) = Cbg(T) =a, (1- ZLw ) exp(-zz;lrl) . (61)

This result is the Dryden form of the vertical gust correlation function.
Again note that e(t), d(¢t) and g(¢) have the same correlation function,

and therefore

=g 2=0g2. (62)

This completes the derivation of transfer functions for the non-

gaussian model. The results are summarized in table 1.
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Table 1.--Transfer functions of the non-gaussian model

Longitudinal Component

H&(s) Hb(s) Hé(s)
Lu 2Lu 1/2
40’u -U— 1 g, —U—
2L 2L L
1+ —53-3 1+ —5#-3 1+ 7%—3
Lateral Component
H&(s) Hb(s) Hé(s)

L 2 L L
ou(128)‘/2[—U2] s 00[7”]‘/2{1 + /3 —[}’—s]
2L 2L 2 LU 2

1+—[}2—s [1+—U£s} ['I+—[-j—s]

Vertical Component
H&(s) Hb(s) Hé(s)
L N2 L 1/2 L
1/2
o,(128)"/*[ 2] ] o[ 2] 1+ A2 ]

2L 2r, 2 L 2

'I+-Tws []4._01‘13] []+7ws]
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Two additional features of the above derivation justify comment.
First, the forms of the transfer functions assumed here have been selected
so -that the correlation functions of the model do not depend upon the
parameter R. Thus R will not influence the power spectral density of
the model. As was discussed in the preceding section, this is a very
convenient result which allows E to act solely as a control on the model's
probability distribution. However, it will become apparent presently
that the particular choices made here will have undesirable effects in so
far as the distribution of increments is concerned, Further comment on
this subject will be found in the discussion of increment distributions
to be found in this section, and also in the suggestions for further
research in a later section of this report,

A second point concerning the above derivation is that the choice
of parameters made in equation 54 is somewhat arbitrary. In particular,
the quantities D; and D, could be chosen to be any pair of numbers satis-
fying the relationship

1 1 _ U

brto; L (63)
This arbitrariness has been used in Reference 45 to define a "patchiness
parameter" which can be included as an additional variable of the model.
This complication is not considered in the present work, but is mentioned
as an indication of the further generality which can be introduced into

the non-gaussian model.
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Probability Distribution
Attention is now turned to some aspects of the probabilistic struc-
ture of the non-gaussian model. The first topic to be discussed will be
the model's probability distribution. The following remarks apply equally

well to all three components of the proposed model; for the sake of defin-

iteness, however, only the longitudinal gusts will be explicitly discussed.

Consider again the physical interpretation of the non-gaussian model

presented in figure 13. The simulated turbulence time history is

g(t) = e(¢) + n(z), . (64)

where
e(£) = a(t) b(z) R(1 +82) =~ /2 (65)
n(t) = () (1 +52) ~ /2, (66)

The time histories a(t), b(¢) and c(¢) are independent, zero mean,
gaussian random processes. Thus each has a probability density of the

form
plz]o) = 71)—,— exp[ - 3(£)°] (67)

The steps to be followed in deriving an expression for the probabil-
ity distribution of the non-gaussian model are:
1) derive an expression for the probability density of the
product a(t) b(t) appearing in equation 65
2) using the density function from step 1, obtain an expres-
sion for the characteristic function of the first term of

equation 64
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3) find the characteristic function of the second term of
equation 64
4) multiply the characteristic functions of steps 2 and 3
to obtain the characteristic function of the non-gaussian
mode1
5) Fourier transform to obtain the density function of the
non-gaussian model.
The first step is to find an expression for the probability density
of the product a(¢)b(¢). Since a and b are independent processes, it

follows that the probability distribution function of their product is

P (319, 20,) = [[ plalo,) pylyloy) dsay (68)
£
where & denotes that region of the x -y plane in which the condition
xy S z is satisfied. The density functions p, and p, are both of the
gaussian form presented in equation 67. Substitution of equation 67 into
equation 68 followed by differentiation with respect to z and finally
integration gives the following result for the density function of

a(t) b(t) .

pab(zloa ’Gb) - TTCI;O'b K°[0|:clfb) ’ (69)
where X, is the modified Bessel function of the second type and order
zero. Equation 69 completes the first step of the derivation.

Now note that g, 0y is the standard deviation of the product a(z) b(%)
and, according to the notation of figure 13, this product is equivalent
to d(t). Also, equation 56 states that the standard deviation of d(%)

is equal to T, by virtue of the choice of transfer functions of the model.



59

Thus 0,0 is equal to g, and equation 69 can be written

Pplzlo,) = ;T-:;;—Ko[%g-l—] . (70)

Uu

The first term of equation 64 is, according to equation 65, the
product of a(t) b(t) scaled by the factor '(1-+Rz) '1/2, so it follows

immediately that

(1+R 2)1/2 | I(l'fR 2)1/2
p,(zlo, >R ) “ o[ - = } . (71)

u = TR o TR o
U U u u
The characteristic function of e(t) can be found by Fourier transforming

equation 71.

o]

0,(7lo, +&,) = [ p,(al0, +B,) exp(i 2nf 5) ds (72)

=-00

The particular form of the Fourier transform employed in equation 72 was
chosen for two reasons. First, it will Tead to some simplification of
the expressions to be derived presently. Secondly, and perhaps more
importantly, a computer program implementing this transformation will be
used for numerical studies later in this report.

Substitution of equation 71 into equation 72 and evaluation of the

resulting integral gives
6,(flo, »B) = (1+12nR o (1+R 2) V25123 " % (73)
Equation 73 completes the second step of the derivation.

Now consider the second term on the right hand side of equation 64,

The process x(t) is clearly gaussian because e(t) is gaussian, and its
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standard deviation is just that of ¢(%) scaled by the factor (1+&2) -1/2'
From equation 56. it is known that o, is identical to o, . Thus the

probability density of (%) is

(147 2)/2 22(1+R 2)
exp{--——————z——} . (74)

p,(zlo ,R) = —H—F—
U o (2m)}/? 2 2
u Uu

The characteristic function of 7z is found by Fourier transforming Py, in

the same manner as equation 72,
4, (Flo. 1R ) = expl-2[no (1+8 2) " /2 f12) (75)

This result completes the third step of the derivation.
Since e(t) and n(z) are independent random processes, it follows that

the characteristic function of their sum is given by the product of their

respective characteristic functions. Thus, for the case of the u-gust

component of the non-gaussian model

(ZTTGuRu f)z} - 1/2exp[ _ 2(Trouf)2

1+Rr 2
Uu

¢,(flo, R = [1 + J (76)

1+R 2

u
The characteristic functions of the vertical and lateral components of
the model are obtained merely by replacing the subscript « of equation

76 with w and v respectively. This completes the fourth step of the

derivation.

The probability density of the non-gaussian model can now be obtained

by inverse Fourier transforming equation 76,

p(clo, . R,) = j 0,(Flo, +R,) exp( - i2m ) da (77)
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Equation 77 is easily evaluated numerically by means of the fast Fourier
transform program FFT which will be found in the appendix of this report. °
Similar equations apply to each component of the model, The probability
distribution function can be obtained directly from the density function

of equation 77 by means of integration.
X
P (zlo, VR ) I p,(ylo, sk ) dy - (78) -

Figure 15 presents the density and distribution functions of the
non-gaussian model for several values of the parameter R, Tabulated

values of these functions will be found in tables B1 and B2 of Appendix B.

R=0.751

2

oplzlo, R)
plz|o, R)

01 |

_0001 AT S W T U VS T T N T |
-6 -3 0 3 6

x/c x/0
Figure 15.~-Probability density and distribution functions

of the non-gaussian turbulence model for various values of
the parameter R.

In the next section of this report it will be of interest to compute
the probability distributions which would be obtained by combining data
from many samples of the non-gaussian model, It will be assumed that the
parameter R is fixed, but o will be allowed to vary randomly from sample

to sample, If o is distributed over the samples with the density function
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Py s the probability density 6f the non-gaussian model based on a11 of

~the samples will be
p,(=lR,) = Jpg(xly,Ru)po(y)dy ’ - (79)
0

and the cumulative gust velocity distribution of the model wii1 be

Plr,) = 1 - j b, IR dy - (80)

Level Crossing Frequency
The Tevel crossing frequency of the non-gaussian model will now be
investigated. The basic relation used here will be the well known result

of reference 36,
_ 1
ng(:r:1 lcg, O’é) ol 1 x, pg,é(:x:1 5 T, |O’g, og-) dx, . (81)

NQ is the number of crossings with positive slope of the level z;, per
unit distance of flight. The function pg,é(xl’ x,) is the joint density
of the turbulence time history and its first derivative.

Just as in the case of the gaussian model considered previous]y'in
this report, a problem arises in the application of this equation to the
non-gaussian model because the first derivative of a stochastic process
having one of the Dryden spectral densities does not exist. This dif-
ficulty can be overcome in a manner similar to that of the gaussian model
by adding high frequency poles to the transfer functions of the non-gaussian
model. These new poles can be Tooked upon as the effect of viscosity at
very short wavelengths. It will be shown that, similar to the case Qf

the gaussian model treated previously in this report, these poles have no
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effect whatsoever on the probability distribution of the model, and act

only as a scale factor of the level crossing frequency. Since vehicle

responses virtually never involve such high frequencies, these poles need

not be considered in response calculations.

The following discussion will at first be restricted to only the

Tongitudinal gusts. The results will then be extended to the vertical

and lateral components. The principal steps of the procedure are:

1)

2)

3)

4)

5)

6)

7)

add high frequency poles to the transfer functions of
the turbulence model

derive expressions for the standard deviation of the
gust component and its first time derivative

examine the effect of these new poles on the spectral
density of the model, showing that the spectra are
still essentially the Dryden forms

use the results of step 2 to obtain an expression for
the joint characteristic function of the gust compo-
nent and its first derivative

inverse Fourier transform the joint characteristic
function of step 4 to obtain the joint density of the
gust time history and its first derivative

apply equation 81 to the joint density of step 5 to
obtain the level crossing frequency of the non-
gaussian model

review the results of steps 4 through 6 in order to
determine the dependence of the level crossing
frequency upon the poles added to the transfer

functions in step 1 and the parameters o, s Lu ’
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U, and R which appear in the result,
8) determine a set of universal curves from which the
level 'cr'ossi.ng frequency for any set of parameters
can be found without resorting to the complete

process described above.

Level Crossing Frequency of the Longitudinal Component

Recall the three Tinear filters used to generate the longitudinal
gusts (table 1, page 55). The spectrum produced by these filters is the
Dryden u~gust form, equation 4. As was pointed out in the discussion of
equation 13, this spectrum behaves 1ike Q”?% at high frequencies. There- .
fore the first derivative of the u-gust random process is not defined.
In order to overcome this problem high frequency poles are added to the

transfer functions as shown in equations 82, 83, and 84,

_ 402 k ;4
Ha(s) [] . ZL;Z; ] [] N st} . (82)
_ ]
I
2L 1/2
s
g (s) [1 . %i][] - Y[’j—s) (84)

The constants kc and kd are scaling factors which will be chosen so as
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to correct the effects of Y, on the standard deviation of c(¢) and d(%).
The power spectral density of d(¢) can be found by substituting first
equation 82 and then 83 into equation 47, multiplying the results to
obtain the correlation function of d(t), and finally Fourier transform-

ing to obtain the power spectral density. The result is

, 2-Y 2 . -Y 3 g
.- 2 . u _u____
--~,(;kd°u) . L, ['nZZL +Y§] 8nL 2
8,,() = — ' - U_U_ 4 X
2

Y, Y2712 2y L. Y. Q42
: u 2| u_u u
[1_[21?) ] ﬂ[“.(LuQ)] ]+(2L+Y } 1+[ 2 ]
u u u

: (85)
The power spectral density of c(t) is obtained by substituting equation

82 into equation 47 and Fourier transforming.

2
(kcoﬁ) Lu

w1+ (5, @)2111+ (v, 2)%]

(86)

QCO(Q) =

The constants kc and kd are now chosen so that the standard devia-

tions of both e(t) and d(¢) are equal to a, .

Y Y12
- Uu
kc = [1 + f—] (87)
u
Yy
kd =1+ >~ (88)
u
g, =0;=0, (89)

It can also be verified that, with these values of kc and kd ,» the

standard deviations of &(¢) and d(t) are egual to

o5 = oy = Uou(YuILu) -z, | (90)
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These results imply that the standard deviation of the non-gaussian

model and its derivative are

o =0 (91)

—1/2 0
o5 = Uoﬁ(YuLh) . (92)
Equations 89 through 92 complete the second step of the derivation.

The power spectral density of the model is
= 2 2y =1 2y =1
@gg(sz) cpdd(n)ﬁu (1+Ru ) + ¢cc(9)(1+Ru ) . (93)

Substitution of equations 85 and 86 into equation 93 gives an expression
for & which is far more complicated than the simple Dryden spectral
density. However, on the assumption that Yy, is very much smaller than

Lu » the power spectral density of the non-gaussian model becomes

c?L Y

u Ui,
5 (a) - ™ [ Lu]

% [1 * (Lu 9)2] [] ¥ (Yu Q)Z]

Yu\2
+0 [f,;J . (94)

Equation 94 is, to second order in Yu/Lu_, the Dryden form of the u-qust
power spectral density with an additional high frequency pole. This is
precisely the result required in order to insure the existance of §(¢),
and equation 94 completes the third step of the level crossing derivation.
Note that the standard deviations of c(t) and d(¢) have not been
altered by the addition of Y, Thus the probability distributions dis-

cussed earlier in this section remain unchanged.
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The level crossing frequency of the non-gaussian model will now be
developed using the modified transfer functions, equations 82, 83, and

84. Consider the joint characteristic function of g(¢) and its first

" derivative., By definition this is

¢g,§(f1 » f2) = Elexpli2n f1g(2) + i2n £, 4(¢)1} . (95)

In terms of the processes a(t), b(t), and e(¢) used in the non-gaussian

model, g(z) and §(t) are

g(t) = ale) b(£) B (1+£2) " /% 4 o(s) (141 2) " /2 (96)
5() = @) b(t) + a(e) BB, (1+R 2) ™/ + 2(e)(1+r 2) /2
(97)

Substitution of these two expressions into equation 95 will give an
expression for 6,5 in terms of a, a, b, b, ¢, and &. If now the joint
density of these random processes can be determined, the expected vaiue
appearing in equation 95 can be evaluated and the joint characteristic
function found.

Note that the processes a, b, and ¢ are zero mean, independent, and
gaussian. Since the derivative of a gaussian process is always gaussian,
it follows that &, b, and ¢ are zero mean, independent, and gaussian.
Furthermore, since a random process and its first derivative are always
uncorrelated, it follows from their gaussian nature that a, a, b, b, e,
and ¢ are mutually independent. The joint density function of these

processes can thus be written directly.
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s o Ty 9L5 5T O* 40 s0°) =
,c(ml 3L2 5L3 s Ly 9 L5 » Glcas 2 ? b’di :cc:cc)

Zc_z_,c;'_,b_,b_.,c
01]2 [ 2]2.; [03}2 | [Ou]? ‘ [05]2 [06]?]} |
a 0a b b e e

of
(2mw)3 G, 0 0} 040, 0y,

(98)
The standard deviations appearing in equation 98 can be found from the

filter transfer functions, equations 82, 83, and 84.

. o_u U(2Lu+Yu) 1/2 . vo, U(2Lu+Yu) 1/2
a Lu 2 a 2Lu ‘YuLu
9 1/2 UL 1/2
o, = L os = U ] > (99)
b u UZZLu-+Yu5 b YuIZLu-+Yu$

-1/2

o}
"
Q
Q
L]
n

Ucu(vu Lu)

Equations 96 through 99 can now be combined to evaluate the joint char-

acteristic function of the non-gaussian model, equation 95.

¢g,g'(f'1 ,leoa,oc-l 20, 205 50, » 0, ,Ru) =

@

+
R T,z tx,

(G)JEXP iz”fl[m] + 121f,

-00

Ru(x1 €, te, xa) T

1/2
(1+£ 2)

§— 3

s 2 o(X] 4Ly L3 2Ly s L5 sXE|T_50° 30, 308 30 ,0°) dTy «vao de
pa,a,b,b,c,c(l’ 2 93 2Ly L5 Glasas D b’a’c) 1 . 6

This completes the fourth step of the derivation. (100)
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Equation 100 can be integrated to give a closed form algebraic
expression for the joint characteristic function of the non-gaussian
u-gust component and its derivative. The joint density function required
for the evaluation 6f the level crossing frequency can then be found, at
least in principle, by means of'the'Fourier transformation

pgcé(xl”;xérc;',aa ;02 ,05:,00',05 VR )=
o (101)
” ¢g,é(f1 » Fol0, 50550, 505,0,,0,,R )exp( -i2nf, x, -~ 2nf,x,) df, df,,
Evaluation of this expression would complete the fifth step of the deriv-
ation. Finally, the level crossing frequency can be found by means of
equation 79.

In reality, of course, the series of integrations required to pass
from equation 100 to the evaluation of the level crossing frequency are
extremely tedious if not overwhelmingly difficult. Fortunately, a far
more convenient means of solution is available through use of a digital
computer and the appropriate numerical methods. Program LEVXNG, listed
in the appendix of this report, is one means of performing these calcu-
lations. This program was, in fact, used to compute the level crossing
results to be presented in this section.

Program LEVXNG permits the rapid calculation of Ng for any set of
parameters g, ,Lu » U ,Ru , and Y, which might be of interest. However,
merely calculating results for various cases does not yield much useful
information concerning the dependence of the solution on its parameters.
Furthermore, every time any of the parameters is changed, it becomes

necessary to repeat the entire calculation in order to obtain the new
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Tevel crossfng freqdencies._ Thus it would clearly be quite useful to
have some idea as to how.a change of parameters will affect the result-
ing Tevel crossings of the model. With this in mind, a set of universal
curves-depehding only upon the parameter Rﬁ will now be derivedf It
will be shoﬁn that the level crossing frequéncy for any choice of the
parameters 9, ,Lu s U s and Y, can be found from these curves.

It is possible to integrate equation 100 with respect to x5 and xg
with a minimum of difficulty. The results of these integrations can be
factored from the remaining integrals and identified as the joint charac-
teristic function of ¢ and & . Equation 100 can then be rewritten in the
form shown in equation 102, (For the sake of simplicity and clarity, the

explicit parameter dependence notation will be temporarily suspended.)

e [=-]

05,51 1 72) = 0, 3(F1 . 52) [(®)]

-00 =00

eMETZ -TE—) dz N
2 L ]
(27) G, 020, 0

where

2(ro, f)? ) 2(mos £,)?

1+R 2 1+R 2
Uu U

¢g’é(f1,fz) = exp| - L (102a)

- T
x = [x; x2 23 4]
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- (20,2) " 0 i2mfyR*  d2nf,R *
) 0 -(2052)" " ionf, R * 0
4= | + (102b)
. . 2y~ 1
i2nf, R *  ionf, R * - (20b ) 0 g ;
Y IS TEE N I S I S -1
_ i2nf, R * 0 0 - (2052) ]
R*=R (1+R 2) /2
U U u J

Now suppose that a special case of the joint characteristic function
is computed. Let all of the parameters with the exception of Ru be set
to unity.

o =L =U=Y =1.0 (103)

Denote this case by $g é . Note that $ is a function only of f, , f2 ,
and B .
U

Consider again equation 102 and introduce the following change of

variables:

A 31/2 . %, 31/2 )
S5 |7 T T | T

a a

L (104)

o= 2(2) -2l
3

Oy 3 4 o3, 3 J

A comparison of this transformed expression with the special case $,

taking note of the equalities



a [
(105) -
L] 1/2 = o 1/2 - L]
qzc&72 cac&72 o,
of equation 99, leads to the conclusion
¢g,é(f1’f2) = ¢g é(f1 Ops f208) (106)

The joint density function of g and é is obtained by means of equation

101. Substitution of equation 106 for ¢g é in equation 101 and intro-

3

duction of the variables

f1‘=f100
(107)
f2‘=f205
gives
] A xl "L‘Z
p oley,m,) = — P [ =P (108)
gs9 0,05 “g,g{ 0, * g

The notation ﬁg é is used to signify the joint density corresponding to

the joint characteristic function $g 5 .

The level crossing frequency of the non-gaussian model can now be
found by substituting equation 108 into equation 81 and performing the

change of variable z,” = x,/0; . The result is

N (z) = Ué‘ Ezg(f;} (109)
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where ﬁé is the level crossing frequency of the special case.
The explicit parameter notation can now be reinstated, Substitute
for”oé'and os from equation 99 and recall that the special case ﬁé depends

only on the parameter R& . The final expression for Ng is

Ng(.’r[cu L, o R ,Yu) = (z, Yu) -1/2 ﬁg[(‘;c—ulRu} . (110)

Note the similarity of equation 110 to the level crossing frequepcy
of the gaussian model, equation 16. Just as in equation 16, the crossing .
frequency is inversely proportional to the square root of Y, Thusvyu
can be interpreted as a control on the zero crossing frequency of the
non-gaussian model, and could be chosen so as to match equation 110 to
some observed data. For the purposes of the present report, however, the
value of Y, can be allowed to remain arbitrary.

Equation 110 implies that once the level crossing frequency of the
special case has been computed for a given value of Ru , the result for
any choice of g, ,Lu , and Y, can be found directly. Alternatively, the
equation states that all u-gust level crossing frequencies of the non-
gaussian model can be reduced to a single function through the indicated
scaling. In order to show that these results apply only to the u-gust
component of the mode], the subscript g will now be replaced by u . _

The function ﬁu(leu) has been computed using program LEVXNG which
is described in Appendix A of this report. Figure 16 and table B3 (of

Appendix B) present the results for several values of the parameter Ru.
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Figure 16.--Level crossing frequencies of the non-gaussian
turbulence model longitudinal component for various
values of the parameter Ru.

In the next section it will be of interest to evaluate the cumulative
probability of exceedance which would result from combining data from a
number of samples of the non-gaussian model. As in the case of the
gaussian model described previously, it will be assumed that the param-
eters o, ,Lu » and Y, vary randomly from sample to sample. The standard
deviation, o, will be assumed independent of Lu and L and the param-
eter Eﬁ will be required to remain constant over all the samples.

Recall from the discussion of the gaussian model that the cumuiative
probability of exceedance is calculated by first finding the average
level crossing frequency for all of the samples, then normalizing with
respect to the average zero crossing frequency. In view of the above
assumptions, the cumulative probability of exceedance of the u-gust

component is
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J'éf N (zlo, L, R, Y} pou(d}pLu, Yu(L, Y} do dL dY

Nu(xlﬂﬁ} - R (1)

v (0]z "
u(lu) féfIVu(Olo‘,L,Ru,Y)pou(c)p Yu(L,Y)dchdY

L ,
U
where Py and pL Y, are the probability density functions of o ,Lu s

3
and Y, Equation 111 can be greatly simplified by substituting equation
110 for Nﬁ « The result is

B (=IR) i

v (0|7 ) u(olRu)- l ”u(gﬁﬁ;)Pou(o)db. (112)

Note that it is not necessary to know the distribution of either Lu ory,
in order to evaluate equation 112, a result analogous to that for the
gaussian model (Eq. 21).

This completes the analysis of the Tongitudinal gust level crossings.
The methods applied above will now be extended to the vertical and lateral

gust components.

Level Crossing Frequency of Lateral and Vertical Components

The level crossings of the lateral gust component will now be con-
sidered. Since the vertical and lateral components of the non-gaussian
model use linear filters of the same form, all results for the lateral
gusts will apply directly to the vertical gusts,

Recall from table 1 the transfer functions to be used in generating
the lateral gust component. The power spectral density produced by these
filters is the Dryden v-gqust form, equation 5, Jusf as in the u-qust case
considered above, the derivative of a process with the Dryden spectrum is

not defined. In order to avoid this problem, the spectrum is modified
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through the addition of high frequency poles to the transfer functions.

1/2 L . 2
o, (128)/" [—1] Ky

: = u N PR
Ha(s) .[1 - ZLZ}’--S] [1 ) Yz;].s) (113)
7,(s) = oK (114)
T =
L L
(o) - ov['UZ]LI/: k:[Hil/: ?zs] (15)
=) =)

Unlike the w-gust case, it is convenient to use two parameters, Y, and
v, rather than only one. The constants kc and kd are scaling factors
which will be chosen so as to correct the effects of Y, and\)v on the
standard deviations of e(¢) and d(%). |

The power spectral densities of ¢ and d can be derived using the

above transfer functions. The condition

2 _ 2 = 2
a, 9, g, . (116)
is satisfied by choosing
v
v
1+ E;
kc B v, 11/2 (117)
[1+ ?%L
v

and
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The standard deviations of ¢ and d can be made equal by choosing v, to

be a function of Y,

\ , Y, vt /2

3V, L, -6L2+6L [1+Z_+——]2L ]

= v v

v, = . — (119)
GLv +Y'u
The resulting standard deviations are
2¢6L +Y

g.z=o.z=cz[zg) [ v ”] _ (120)

e v 3 Y,

With the above choices of parameters, and assuming the condition Yy << Lv s

the power spectral density of the lateral gust component becomes

3y
o 2L (1+52)[1+3(z,9)2] y
= 7)_ + _-1)- .
W T o

Now consider the level crossing frequency of the lateral component.
Just as in the treatment of the longitudinal gust, an expression for the
joint characteristic function of » and » will be derived. This expression
will be formally identical to equation 102, but in the present case the

standard deviations are

I &
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2 3/2
O'a=26‘u[T] or = o (U'Y)
R u ]3/2 ) [ U -5/2[Lv}1/2[ Yb ]1/2
o, = +|sL op = | 5L 27 e 2 L (122)
b z[zzv b ZLDJ Y, i
6L +1/2 1/2
= . = A I
% " % © cv[ZLv][ Y, ] []+ GLUJ
J

Using equation 122 and computer program LEVXNG listed in the appendix,

it is possible to calculate exact results for the level crossing frequency.
However, a more convenient solution of the problem can be found by intro-
ducing an approximation for oz and s of equation 122 which will allow

the derivation of universal curves similar to those for the longitudinal
case (Fig. 16). On the assumption that L, is much larger than Y, the

expressions for ap and oy, of equation 122 become

o3, = [ZLUJS/Z[Y_U]I/Z

o) (7 |

Employing these approximate results and following the procedure described

+ (123)

(]

Q.

above for the longitudinal gust component, derive the joint characteristic

function of the special case
o =L =U=Y_ =10, (124)

and denote this result by $v 5 Return to equation 102 and introduce

the change of variables
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. _F1 ,5/2 . _ %2
x,"=—=2 x,” =——4
1 O 2 o
(125)
x x
PR AP OF A
b b
Comparison of this result with av 3 givesu
6,51 F) =8, s(fio L f0) . o (126)

Continuation of the same procedure used for the u-gust case leads to the

final result

- X
Nb(x[cv 5Ly s B 5Y ) = [ZLUY ] Nv[gzlﬁb] R (127)

which is valid for Yv << Lv . The level crossing frequency of the verti-
cal gust component can be obtained by replacing the subscript » of equa-
tions 113 through 127 with the subecript w.

The special cases ﬁv and ﬁb have been computed by means of program
LEVXNG. Figure 17 and table B4 (of Appendix B) present these results for
several values of the parameter R.

A cpmparison of figures 16 and 17 reveals that the special cases appear
to differ by only a constant of proportionality which depends weakly upon
the parameter R. This suggests that a transformation exists such that the
level crossing frequencies of all three components of the non-gaussian
model can be expressed in terms of a single set of universal curves. This
transformation is not derived here, but the possibility of its existence

is mentioned as a point of interest.
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Figure 17.--Level crossing frequencies of the non-gaussian
turbulence model lateral and vertical components
for various values of the parameter 7.

In the next section of this report it will be necessary to calculate
cumulative probability of exceedance curves for the vertical and lateral
gust components, Following the procedure described previously for the
longitudinal components gives

¥ (or) !

oy o, ﬁv(glav)p%(c)dc : (128)
v v

OY——{ 8

Just as in the u-gust case, the distribution of Lv and Yv need not be
known in order to evaluate this expression. The result for the vertical
gusts can be obtained by replacing the subscript v of this equation with
the subscript w, Equation 128 completes the analysis of the level cross-

ing frequencies of the non-gaussian model,
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Increment Distribution
The probability distribution of the non-gaussian model's velocity
increments will now be derived, The following remarks apply to all
three components of the model; however, only the u-gust component will
be explicitly treated.

Consider the increment of the longitudinal gust component.
A (#]7) = u(t) - u(t-1) (129)

The parameter T is a constant. According to figure 13, equation 129 can

be rewritten as

Au(tl'r) = Aab(tl'r) + Ac(‘bl'r) (130)

where
b, (1) = fa(t) b(¢) ~al¢- )bt - B (1+R2) 2 (131)
A (8]0) = le(t) -e(e-11(1+R 2) "7, (132)

The procedure to be followed in finding the probability distribution of
4, is
1) derive an expression for the characteristic function of A,
2) derive an expression for the characteristic function of Aab
3) multiply the results of steps 1 and 2 in order to obtain
the characteristic function of A, -

4) Fourier transform the result of step 3 to find the proba-

bility density of Au.
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Since A, is a linear transformation of a gaussian process, it follows
that it must also be gaussian. Its mean value is zero and its standard

deviation is given by

cA: = 2[0,? - cc(gr)z(nauz)” , (133)

where Ccc is the correlation function of o(¢), equation 55. The character-

istic function of Ac is thus

¢Ac(fl0u ’Lu sUsRu sT) =
(134)

exp{ - (2n0, £)2(1+7,2) ™' (1 - exp( [t} .
u

The characteristic function of Aab is more difficult to evaluate.

Since g and b are gaussian processes with zero means and correlation

functions given by equations 51, 52, and 54, ¢A can be written in the
ab

form

oo

2UsR ,T) = I(4)j exp[

-00

i('rrfRu z, &, -, ,)

172
(t+R *)

¢Aab(flcu ’ Lu

Pa(t), alt-1), b(2) , blt=7)@1s @2 s s @l0, s L, U, 1) doy divp ds dany

where
_ euﬂ-%ETZ'IZ)
Pa(t), alt-1), b(t), b(t-T)(xlcu’Iﬁ’ g, 1) = (2w)?[det(4)]

(135a)
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x = [, 2z, 2,2 JT
1 2 L3 %y )

[ caa(,o) Caa(T) 0 0 ]
caa(-r) caa(o) 0 0
=
0 0 Cp0) Gy ()
(1) = 0,28 2 exp( - 5L |7])
CqlT) = 0,728 —=exp(- 2Lu]-r|
Cpp(7) = g exp( - zp—It]) . J
U Uu

The characteristic function of’Au is given by

chu(flou »L,sUsR 1) = ¢Aab(flcu sL,sU R , T) ¢Ac(flou, L,U,R ,7)
(136)

The probability density of Au can be found by Fourier transforming equa-
tion 136. A closed form solution of this problem has not been derived,
however program INCPD listed in the appendix of this report can perform
all required computations for a numerical solution of the problem.

Figure 18 presents density and distribution functions of the u-gust
and its increment for a typical case. Comparison of the density functions
of figure 18 with those of figure 9 on page 41 leads to the conclusion

that the non-gaussian model does not properly model the velocity increment



84

: standardized distribution
5r  density function 9998 r  fynction
-4 velocity 8T increment
= -9 ™ .
_ <3 EL 1.0 velocity
B = S} R =1.0
S .2t increment “
o] nl of
A} T ot
0 A .0001 L [l L L L L 1 | Y ']
] 1 2 3 -8 -3 0 3 6
x/o z/a

Figure 18.--Comparison of a typical non-gaussial model

u-gust component probability distribution with that of
the corresponding increment distribution.

distribution of atmospheric turbulence. Additional data in the form of
probability distribution functions presented in references 22 and 25 con-
firm this conclusion. The increments of actual turbulence are sharply
more non-gaussian than the velocity, while the increments of the model
are less non-gaussian than the velocity. As a result, the non-gaussian
model underestimates the occurrences of large increments.

The reason for this can be seen by considering the gaussian and
non-gaussian portions of both the velocity and velocity increment. The
ve]déity of the model is the sum of two independent parts; the product
a(t) b(¢) which has a K, distribution (Fig. 12), and c(t) which is gaus-
sian, The relative intensity of these two parts can be shown to be

[since a(t)b(t)is equal to d(t)]

0
%ab _ R{Cdd( )]1/2 =R . (137)

9%e Céc(O)

The probability density of the gust velocity can be found by convolving
the Kb and gaussian densities to obtain a result which is, in general,

non-gaussian. Similarly, the velocity increment of the model is the sum
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of two independent parts; the increment-Ac which is gaussian, and the
increment Aab which is non-gaussian, Just as above, the probability
density functfons of these two parts, and their relative intensities can

be shown to be

()
ah  p Nag®) Cag D] (138)
0Ac ' [Cccm -CGZ(T)]

However, the probability distribution of Aab is not sharply non-gaussian
1ike fhe KO distribution, It is instead much smoother, tending to look
like the exponential function, exp( - |x]). Because of this smoothness
and because A, has the same intensity relative to A, as has the product
a(t) b(t) relative to c(t), it follows that when the density of AL is
convolved with the gaussian density function, the result will be more
nearly gaussian than the convolution of Ko with the gaussian density.
Thus, as shown in figure 18, the distribution of Au is more nearly gaus-
sian than the distribution of u itself.

There are two ways in which the increment distribution can be made.
more strongly non-gaussian than the velocity distribution; increase the
intensity of Aab relative to Ac while holding the ratio oab/cc constant,
or make the distribution of Aab more non-gaussian than the Ko distribution.
The second of these does not appear to be possible. The first, however,
could be achieved by modifying Ccc and cdd of equation 138 g0 that the
ratio c-Aab/oAc is greater than R. This would require changing the trans-
fer functions of the model, and would invalidate many of the results
obtgined so far. For this reason, the possibility of modifying the mode}

so as to more accurately model the increment distribution of atmospheric

turbulence will not be discussed in this report. Instead, this subject
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will be suggested as a topic for further research, -

Because the model in its present form does not- properly reproduce
the increment distributions of actual turbulence, its use should be
restricted to those applications which require only the accuratevmode1ing
of the gust velocity distribution and level crossing frequency. These
applications will typically involve responses of the rigid body modes of
the aircraft which are not as excited by large increments with short time

lags as are the structural modes.

Summary
This completes the statistical analysis of the proposed non-gaussian
turbulence model. Before proceeding to the next section, a brief summary
of this section is in order.
1) Equations 38 through 63 showed that the linear filters of
the model could be chosen so as to produce the Dryden spec-
tral densities. The results are contained in table 1 which
summarizes the transfer functions for each of the three gust
components.
2) Equations 64 through 80 were concerned with the probability
distribution of the non-gaussian model. Figure 15 pre-
sents density and distribution functions attainable
with the model.
3) Equations 81 through 128 derived the level crossing freqg-
uency of the model. The results of this derivation are
presented in figures 16 and 17, which show sets of uni-
versal curves from which the level crossing frequency of

the model can be derived for any set of parameters,
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4) The last part of this section, equations 129 through 138
has discussed the increment distribution of the non-
gaussian model. The results, presented in figure 18 for
a typical case of the longitudinal gust component, show
“that the non-gaussian model in its present form does not
properly model the increment distribution of atmospheric
turbulence. The reason for this behavior has been dis-
cussed and a possible solution to this problem has been

suggested as a topic for further research.



VALIDITY OF THE NON-GAUSSIAN MODEL

The results presented in the previous section have indicated that
the probability distribution and Tevel crossing frequency of the non-
gaussian model exhibit characteristics very similar to those of single
samples of atmospheric turbulence, In this section it will be shown
that the model also fits the cumulative probability distributions and
cumulative probability of exceedance distributions measured in atmos-
pheric turbulence. In addition, it will be shown that the non-gaussian

model fits these data better than the gaussian model,

Experimental Data
The experimental data used here will be a portion of those obtained
during the LO-LOCAT project sponsored by the United States Air Force
(Ref. 11). Although these data are exclusively from low altitude flight,
they were selected for use in this report for two reasons,
1) The large body of data collected during the LO-LOCAT pro-
gram can be divided into categories on the basis of flight
altitude, atmospheric stability, and terrain roughness
while retaining a large number of samples in each cate-
gory. This will permit comparison of the models with
turbulence data obtained under quite restricted condi-
tions without the necessity of using small data samples.
2) These data are readily available to anyone wishing to
either verify the results presented in this report or
extend them to a wider variety of cases.
The disadvantage associated with using only this low altitude data

is that any conclusions which might be drawn from them cannot be
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generalized to higher altitudes. Fdrther work will be required in order
to show the validity of the model at high altjtudes.

A1l of the resuits presented in this section are based on vertical
gusts. Computations. for Tongitudinal and lateral gust components have
indicated that the results presented here are representative of all three
components.

The data categories used in this section are described in taE]e'Z.
These pérticu]ar categories were selected because they represent a wide

range of terrain, altitude, and atmospheric stability conditions.

Goodness-of-Fit-Criteria

The object of this section is to compare both the gaussian and
non-gaussian models with experimentally measured probability distribu-
tions and level crossing frequencies. Before any comparison can be
made, however, it will be necessary to define some goodness-of-fit
criterion. That is, some objective test which can be used as an indi-
cation of how well the theoretical curves of the turbulence models fit
the measured data,

A problem arises in the application of standard statistical methods
such as the chi-squared or Kolmogorov-Smirnov tests because they require
that the experimental data be based on independent samples. Unfortunately,
the data of reference 11 which are to be used here are not based entirely
on independent samples. Hence these tests are not applicable.

There appears to be no easy so]ution to this problem. However, for
the purposes of this report, it will be possible to avoid this difficulty
by assuming that the data can be treated as essentially exact. Any

possible differences between the true statistics and the measured
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Table 2.--Description of data categories used in this report.

Category Description

111000 Vertical gust data based on 5,700 kilometers (3,536 statute
miles of flight at an altitude of 76 meters (250 feet)
above the surface. All data collected during 109 flights
over high mountains in very stable atmospher1c conditions.

112000 Vertical gust data based on 7,350 kilometers (4 577 statute
miles) of flight at an altitude of 76 meters (250 feet)
above the surface. Al1 data collected during 140 flights
over high mountains in stable atmospheric conditions.

113000 Vertical gust data based on 6,800 kilometers (4,226 statute
miles) of flight at an altitude of 76 meters (250 feet)
above the surface. All data collected during 129 flights
over h1gh mountains in neutral atmospher1c conditions.

121000 Vertical gust data based on 5,800 kilometers (3,620 statute
miles) of flight at an altitude of 228 meters (750 feet)
above the surface. All data collected during 112 flights
over high mountains in very stable atmospheric conditions.

122000 Vertical gust data based on 7,800 kilometers (4,840 statute
miles) of flight at an altitude of 228 meters (750 feet)
above the surface. A1l data collected during 147 flights
over high mountains in stable atmospheric conditions.

123000 Vertical gust data based on 5,000 kilometers (3,122 statute
miles) of fiight at an altitude of 228 meters (750 feet)
above the surface. All data collected during 95 flights
over high mountains in neutral atmospheric conditions.

413000 Vertical gust data based on 2,900 kilometers (1,811 statute
miles) of flight at an altitude of 76 meters (250 feet)
above the surface. All data collected during 55 flights
over plains in neutral atmospher1c conditions.

414000 Vertical gust data based on 2,300 kilometers (1 446 statute
miles) of flight at an a1t1tude of 76 meters (250 feet)
above the surface. All data collected during 44 flights
over plains in unstable atmospheric conditions.
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statistics will be ignored, This is a common approach to the analysis

of turbulence data (e.g., Ref, 23). This assumption {is acceptable in

the present work for two reasons.

1)

2)

The purpose of this section is only to indicate to the
reader that the non-gaussian model produces a better
fit of the experimental data than the gaussian model.
The results to be presented will show that in every case
the gaussian model underestimates the occurrences of
the high velocity gusts. Even though this error may or
may not be judged statistically significant by one of
the standard tests, it is clearly significant for the
purposes of aircraft design if it occurs in every case
tested. Thus it is contended that a rigorous statisti-
cal test of significance is not required for the pur-
poses of this report.

As indicated in reference 11, the LO-LOCAT data used
here (which were selected for the reasons presented
previously in this section) contain some nonstationary
effects. Run tests of both the mean and mean square
indicated that approximately 30% of the LO-LOCAT turb-
ulence samples could not be accepted as stationary at
the 0.02 level of significance. Unfortunately, the
models used in this report assume turbulence to be a
stationary process. Thus the presence of nonstationary
effects in the experimental data can be expected to
have some effect on the results to be presented here,

and the magnitude of this effect is unknown.
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For these reasons, a more careful analysis of the data is not warranted
at this time,

- Since the experimental data are assumed to represent the true sta-
tistics of atmospheric turbulence, the problem reduces -to one of simple
curve fitting. Three goodness-of-fit criteria have been investigated in
the research reported here. The .first of these is the integral of the
squared error,

xmax
e, (B) = j 7, (@) ~ B (2]R)|?de (139)
0
where & is the highest gust velocity measured, The functions Fﬁata

and F denote either the cumulative probability of exceedance or

model
the cumulative probability distribution of the data and the model
respectively. Note that since the model distribution depends upon the
parameter R, the error criterion also depends upon R. The best fit of
the experimental data is chosen to be the turbulence model with the
value of R which minimizes €iop * Note that if setting R to zero min-
imizes €ioe then the gaussian model is the best fit.

The second error criterion investigated was the maximum difference
between the experimental data and the model.

max

R = F - .F R ]40
mam( ) 0<z<xmaxl data(x) model(xl )I ( )

The quantities used in this equation are the same as those in equation
139. Again, the best fit of the data is chosen to be the model with that

value of R which minimizes ¢
max
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Application of both €. and €, . to a number of data samples

se
revealed that both criteria produced essentially identical results. For
this reason, and because it is a more difficult test to apply, € oo will
not be used in the numerical calculations of this report.

‘The reader should note that both € oo and € oz apply primarily at
low gust velocities, where F is large, rather than at high gust velocities,
where F is very small. Thus both criteria tend to ignore errors in
modeling the occurrences of very high gust velocities and are therefore
not ideally suited for determining the best fit of the data for the pur-
poses of aircraft design.

A third criterion, which is more sensitive to the occurrences of
high gust velocities, has been studied. This is the maximum absolute
difference of logarithms.

max
(R) = x 10910[Fdata(m)] - log]O[FhodeZ(le)] . (141)

0Szxsx
ma:x

€1og

This criterion seems to be quite sensitive to small errors at the high
gust velocities and may therefore ignore more serious errors at lower
gust velocities. It does however lead to a very good fit of the LO-LOCAT
data, especially when plotted on Togarithmic scales as is the usual
practice.

The above discussion makes it apparent that the two error criteria,
€ and E]og » emphasize different aspects of the curve fitting problem,

max
For this reason, both criteria will be used in the following tests.
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Generation of Model Data

The cumulatiyve probability of exceedance and cumulatiye probability
distribution of the non-gaussian model vertical component were generated
according to equations 80 and 128 derived in the previous section of this
report. The assumptions involved in these equations will be found in that
section. The probability density of o, for each case was obtained from
distribution functions presented in reference 11.

It was also assumed that the parameter R of the model could be con-
sidered constant for each data category. Since these categories are
defined by altitude, atmospheric stability, and terrain characteristics,
this assumption is equivalent to requiring £ to be in some sense deter-
mined by these factors, As R is merely a parameter which arises from
the manner in which the non-gaussian model is physically interpreted
(Fig. 13), there is no difficulty in assigning to it this functional
dependence., The explicit form of the dependence is, of course, unknown.

Results were computed numerically for ®r values of 0.0, 0.5, 0,75,
1.0, 1,33, and 2.0. The first of these (R = 0.0) corresponds to the
gaussian turbulence model. The five other cases correspond to the non-

gaussian model with varying degrees of non-gaussian behavior,

Results

Table 3 presents the computed error criteria e and € for the

max log
various data categories and values of R. Error values for the cumulative
probability of exceedance and cumulative probability distribution have
been summed because the same value of R does not necessarily minimize a
given error criterion for both functions simultaneously. In every case

the non-gaussian model provides a better fit of the experimental data
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Table 3. --Goodness of-fit criteria for various LO-LOCAT

data categories.

Category Test Turbulence Model Parameter
: | R=0.0 g _ _ _ -
Gaussian 3—95 R=0.76| BR=1.0 | R=1.33| R=2.0
o € 2.5E-1 2.3E-1 | 2.0E-1 1.6E-1 | 1.1E-1 4,8E-2
111000 max :
€10g 8.9e0 | 4560 |2.7E0 | 1.6E0 | 9.3E-1 3.9E-1
- € 1.7E-1 1.6E-1 | 1.3E-1 1.0E-1 | 6.0E-2 1.0E-1
112000 max
£ 5,1E0 | 2.560 |1.2E0 | 4.3E-1 | 2.8E-1 5.8E-1
og
€ 1.2E-1 1.0E-1 | 6.9E-2 2.56-2 | 4.4E-2 1.4E-1
113000 max
£, 3.06 0 | 1.4E0 |3.1E-1 5.0E-1 | 9.8E-1 1.4E 0
og
£ 2.4E-1 2.2E-1 | 1.9E-1 1.5E-1 | 9.3E-2 | 3.1E-2
121000 max :
©10g 8.000 | 4.56e0 |2.8E0 | 2.0 0 |1.3E 0 | 8.2E-1
€ | 1-7E=1 1.56-1 | 1.2E-1 8.0E-2 | 4.0E-2 | 8.4E-2
122000 _
e, 3.860 | 2.3k 0 |[1.2E0 | 6.26-1 | 1.8E-1 4.0E-1
og
€ 8.2E~2 6.5E-2 | 3.6E-2 | 4.1E-2 | 8.1E-2 1.7E-1
123000 e
€, 4.0E0 | 2.1E 0 |8.2E-1 2.4E-1 | 4,9E-1 8.9E-1
og
€y | 1+1E-T 9.2E-2 | 6.0E-2 | 6,6E-2 | 1.1E-1 1.9E~1
413000 m
g, 4,060 | 1.5 0 | 1.8E-1 7.36-1 | 1.3 0 | 1.8E0
og
£ 4,7E-2 | 3.2E-2 | 2.3E-2 6.1E-2 | 1,2E-] 2.2E-1
414000 max
5,560 | 2,90 |1.560 | 7.2E-1 | 5,9E-1 8.4E-1
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than does the gaussian model, although the best value of R for a given
data category depends upon the error criterion used, This is especially
true for those data collected over plains., Note, however, (Table 3) that
in every case it is possible to choose an R value which simultaneously
reduces both criteria below their values for the gaussian model.

Figures 19 and 20 presented on the next several pages compare the
experimental data with both the indicated best fit models of table 3 and
the gaussian model. It will be noted that in every case the gaussian
model underestimates the occurrences of high gust velocities. In general,
these results and others not presented here indicate that the two criteria
agree much better for the high mountain data than they do for the plains
data.

Table 4 summarizes the values of R which yield the best fit of the
data for each of the error criteria. These results seem to indicate that
the parameter R of the turbulence model may be related to the terrain
and stability parameters of the LO-LOCAT data categories. It appears
that R increases with atmospheric stability and terrain roughness, but is
relatively unaffected by altitude. This result, however, cannot be
verified without a much more careful investigation using more data and
applying a regression analysis in order to objectively analyze the depen-

dence of R upon the data parameters.

/‘ Summary

This section has presented a comparison of the gaussian and non-
gaussian models with experimentally measured cumulative probability of
exceedance and cumulative probability distributions of low altitude

turbulence. Two simple error criteria have been used to select the best
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model selected according to the ¢

log best fit criterion.
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values of the parameter R which fit the experimental data. Figures 19
aﬁd 20 present the resﬁ1ting curves, Table 4 1ists:the values of R |
which minimize the error for each data category. These R values seem to
exhibit a systematic increase with increasing atmospheric stability and
terrain roughness. _However, this result cannot be verified without a more
careful analysis. |

The results of this section indicate that the non-gaussian model is
a better fit ofvexperimental data than the gaussian mode1. The conclu-
sion drawn is that the non-gaussian model is a better represenfation
of atmospheric turbulence, at least as far as the modeling of distribution
functions and level crossing frequencies for the purposes of aircraft

design is concerned,

Table 4.--Values of the turbulence model parameter R
which produce best fits of the experimental data.

Data R which R which
Category Minimizes Minimizes
€ €
max log
111000 2.0 2.0
112000 1.33 1.33
113000 1.0 0.75
121000 2.0 2.0
122000 1.33 1.33
123000 0.75 1.0
413000 0.75 0.75
414000 0.75 1.33
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CALQULATION OF NON-GAUSSIAN RESPONSE STATISTICS

The preceding sections of this report have discussed the non-gaussian
model in detail and shown that its statistics are consistent with those of
experimentally measured turbulence data. The proposed model is of little
value, however, if it cannot be used to study vehicle responses to turbu~-
lence. The purpose of this section is to investigate some methods by
which response statistics of linear vehicles can be found using the non-
gaussian modet. The statistics of particular interest here are:

1) power spectral density

2) probability distribution

3) level crossing frequency.

The assumptions made regarding the nature of the turbulence are the same
as those used in defining the non-gaussian model (page 47). The vehicles
considered in this report will be required to satisfy the following con-
ditions:

1) they must be stable linear systems

2) their transfer functions must have at least two more poles

than zeros

3) their transfer functions must be rational

4)' their transfer functions must have no multiple poles.

Only the first and second of these conditions is absolutely necessary.
The third and fourth conditions are required because they permit simpli-
fication of the computer programs which will be used in the next section
of this report. These two conditions could therefore be removed by

writing more general programs.
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The following discussion will first center on some standard tech-
niques by which the above mentioned statistics might be calculated for
responses to single components of the non-gaussian model. It will be
shown that these methods are not entirely suitable for finding probabil-
ity distributions or level crossing frequencies, Attention will then be
turned to an approximate method of computing these statistics from the
eigenvalues and eigenfunctions of a certain unsymmetr{c kernel, The
problem of responses caused by two or all three components of the non-

gaussian model will then be briefly discussed.

Standard Solution Techniques
Figure 21 shows the combined turbulence model - vehicle system which
is to be analyzed. Note that this system is linear throughout with the
exception of the single multiplication. It is this single nonlinearity
which creates difficulties in response calculations. Now consider some
standard techniques by which the three response statistics listed above

might be computed.

n (&)
" a A (s) a(t)
a a ltipl )3 e(t)
() multiply
"y VI+R?
N H, (s) ] d(t) sum r(t)
b b I %w 7 (5) pe—
n (&) g(t) v response
N “a 7 (s) e(t) 1 | vehicle
¢ c s Y23
wide band linear scale
Gaussian filters factors
white noise
sources

Figure 21.--Block diagram of the turbulence model-
vehicle system which is to be analyzed in order to
determine vehicle response statistics.
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Power Spectral Density

Since the vehicle is assumed to be a linear system, and since the
power spectral density of the turbulence time history is assumed known
(Eq. 4, 5, or 6), the power spectral density of the vehicle response can
be found from the well known input - output spectral relationship for

linear systems (Ref, 38),

¢m,(sz) = |BE(iUQ)|? @gg(g) . (142)

where H(s) is the transfer function relating the input g(¢) to the out-
put r(t). The calculation of response power spectral densities will
therefore not present any difficulty, and will not be discussed further

in this section.

Response Distribution and Level Crossing Frequency

The calculation of response distribution functions and level cross-
ing frequencies provides somewhat more of a challenge than did the power
spectral density discussed above. Two commonly used techniques are men-
tioned here as practical methods which may have application in some cases.

The first method discussed will be simulation. This is the direct
approach to the problem of calculating response statistics, and may be the
most convenient method of dealing with the non-gaussian model for many
applications. Just as the name of this method suggests, the entire turbu-
lence model - vehicle system is programmed on an analog or digital com-
puter and the vehicle is "flown" through many miles of turbulence while
its responses are recorded, After a sufficient amount of data have been

collected, estimates are made of the response statistics.



109

The simulation method has both advantages and disadvantages. Among
its advantages is the fact that it can be used to study both liﬁear and
nonlinear vehicles. It can also be applied to nonstationary problems
such as the evaluation of control requirements during landing approaches.
The disadvantage of this method is that it does not readily yield results
concerning rare events such as encounters with very high velocity gusts.
The computer time required to estimate these occurrences may be prohib-
itive.

The simulation approach to response calculations may thus be a very
useful technique in some cases, but it is not a convenient method of
estimating the occurrences of rare events. Thus it will probably not be
satisfactory when information on the tails of the probability distribu-
tion or level crossing frequency is sought.

The second method of computing response statistics is the Gram -
Charlier expansion. This is a technique for expanding probability den-
sity functions in an orthogonal series of Hermite polynomials. The
method can be applied to both one-and two-dimensional density functions,
and so could be used to obtain the density function of the response, as
well as the joint density function of the response and its first deriv-
ative. The first of these is equivalent to the response distribution
function, and the second can be used (through Eq. 81) to determine the
response level crossing frequency. This method could, at least in
principle, be used to obtain the response statistics which are of interest
here.

Unfortunately, the Gram - Charlier technique cannot be applied in
all cases because the coefficients of the expansion become very difficult

to calculate if more than the first two or three terms are required.
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Consequently, this method is only useful if a very minimal number of terms
is needed. Since the first term of the expansion turns out to be the
gaussian density function, it follows that the Gram-Charlier technique
is useful only when the density function being expanded is very nearly
gaussian. The method also becomes impracticé] if the tails of the distri-
bution to be expanded do not decay as rapidly as those of the gaussian'
density function.

On the basis of preliminary analysis it appears that in many cases
the non-gaussian turbulence model will produce response density functions
which require an unreasonable number of terms to converge. Table 5 shows
the number of terms required to expand the density function of the model
itself for various values of the parameter R. The shape of these density
functions can be inferred from figure 15 on page 61. These results make
it clear that any distribution which differs from gaussian by more than
a slight degree will not be suitable for analysis by the Gram-Charlier

technique.

Table 5.--Number of non-zero terms of Gram-Charlier expansion

required to represent density functions of the non-gaussian

model to various accuracies over the range of zero to six
standard deviations.

ACCURACY MODEL PARAMETER R
a .15 .2 .25
+ 10% 1 2 4 5
t 20% 1 1 3 5
+ 50% 1 1 2 3




111

In the following parts of this section, an expansion method will be
derived which works best in the case of a strongly non-gaussian response,
This new method will thus compliment the Gram - Charlier expansion as a
suitable techniqqe for finding response statistics. Furthermore, unlike
the Gram - Charlier technique, it can be shown that this expansion has -
the characteristic of approximating the tails of the distribution very
well, even when only a few terms are used.

The Gram - Charlier method will not be discussed further in this
report. However, references 24 and 46 provide good descriptions of the
technique and its use in computing one~ and two-dimensional density func-

tions.

Decomposition of Response

The above remarks have considered two well known methods of dealing
with system responses to non-gaussian inputs, and pointed to some of the
shortcomings of each. A method will now be developed which specifically
treats the response of linear systems to the non-gaussian turbulence
model. Before beginning the derivation of this new method, however,
some introductory remarks are in order.

Consider again the turbulence model - vehicle system of figure 21.
Since the vehicle is assumed to be linear, the system can be redrawn as
shown in figure 22. Note that the definition.of g(t) in this figure
differs from that used previously. The process g is now gaussian because
a gauésian process remains gaussian when passed through a linear filter.
The process k(¢) on the other hand is the result of passing d(¢), which
has a X, probability density (Fig. 12), through a linear filter, In

general, the distribution of %(¢) is unknown. The total vehicle response,
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N na(t)l g _al(t) non-gaussian
a ' a . k(t)
A multiply P B 7
— (%) ate) L1 A+ R
¥, iy, b(t) sum r(t)
(¢) | response
v e T o) [ lew| 1
° ¢ v Y1 +R* g(t)
wide band Tinear vehicle scale gaussian
gaussian filters factors
white noise
sources

Figure 22.--Turbulence model - vehicle system.with the
vehicle response decomposed into gaussian
and non-gaussian parts.

r(t), is the sum of g(¢) and k(t). Figure 22 has thus shown how the
response of the vehicle can be decomposed into gaussian and non-gaussian

parts.

Approximate Solution for Response Prabability
Distribution Function
Figure 22 has shown that the vehicle response can be written as a
sum of independent gaussian and non-gaussian parts. This immediately sug-
gests the possibility of finding the distribution function of the response
from its characteristic function. The steps in this procedure are:
1) find the characteristic function of the gaussian portion
of the response, ¢g
2) find the characteristic function of the non-gaussian
_portion of the response, ¢k
3) multiply ¢g and ¢k to obtain the characteristic func-

tion of the total response, ¢r
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4) inverse Fourier transform ¢, to obtain the density func-
tion of the response, P-

The explicit:parameter dependence'notat{on used in previobs\diScus-
sions of characteristic functions and probability distributions will not
be used in this section in order to simplify notation. The readér shoﬁ]d
be aware, however, that the results obtained here depehd upon thevpahémf
eters of the turbulence model as well as the dynamic chéracteristics of
the vehicle. |

As the first step in determining the response distribution fuﬁc-
tion, the characteristic function of the gaussian portion of the response
will be found. Recall the definition of the characteristic function used
in this report (Eq. 72). For the gaussian portion of the response, the

result is
¢, (f) = expl-2(mo, £)?(1+5*) 711 . (143)

The standard deviation appearing in this expression, o, » can be found
from the power spectral density of the response, equation 142, This
completes the first step of the derivation.

Now consider the characteristic function of k(¢). Two very impor-
tant assumptions will be made concerning this process. It is almost
certain that neither of these assumptions is necessary in order to obtain
the results presented here; however, their use will greatly simplify the
derivation of these results.

1) It is assumed that negligible error will occur in the response

statistics if the bandwidth of the white noise sources in

figure 22 is fixed at some very high but finite 1imit as
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shown in figure 23, By virtue of the second assumption
regarding the vehicle transfer functions, only vehicles
which act as Jow pass or band pass filters will be con-
sidered in this report. Furthermore, the filters used
in the turbulence model itself (Table 1) are either Tow
pass or band pass. Consequently, even when the nonlinear
nature of the system is taken into account, it is clear
that it will always be possible to select a value of Qc
(e.g., 10*° or 10'%%) such that the variance of the
response and its first derivative will not be signifi-
cantly affected by further increase of the noise band-
width. In view of this, it is reasonable to expect that
the response probability distribution and level crossing
frequency will also be unaffected by increases in band-
width.

<DYN’](Q)

1.0

-QC 0 QG

Figure 23.--Power spectral density of
band limited gaussian white noise.

It is also assumed that the impulse response functions
of the filters appearing in figure 22 can be truncated
at some very large value of their argument, as shown in
figure 24, without causing significant error in the
vehicle response. This seems quite reasonable in

view of the fact that the impulse response functions
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of the vehicle and the turbulence model filters all
decay exponentially. If this assumption were not true,
it would follow that the response of the vehicle
depended to a significant degree upon the infinite
past. Thus the response could never reach a state

of statistical equilibrium, and the assumption of
stationarity which has been made throughout this report

would not be valid.

exponential decay

—— "

0 tc/2

Figure 24.--Truncated impulse response function.

Once these two assumptions have been made, the eigenvalue expansion of the

response distribution function follows quickly from a certain theorem due

&
¥ to Schmidt which will be stated shortly.

Consider again figure 22. From linear system theory it follows that
the response time history k() can be written as the iterated integral

[+ -]

= R I - ” -~ - -~
k(¢) = mjﬂ h,(8) b (a”) By (B7) m (£-8-0")n, (£ -6-87) du”"dB"dS

(148)

Now, because of the first assumption above 1imiting the bandwidth of
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n, and nb , it follows (RFf' 47, page 170) that these processes are con-
tinuous with probability one. The integrand of equation 144 is there-
fore integrable and, by Fubini's theorem (Ref. 48), the order of integra<

tion can be freely interchanged. Substitute the change of variables

(145)

"
o
1
LoN]
A

B
and integrate with respect to 8. The resulting expression for k(t) is

[e ]

ko) = 1 +r) M [ - [ ny(e-e)nie . p)dsfan L (146)

-—00 !

where the integration with respect to B8 is arbitrarily chosen to be

performed first, and the kernel h(a ,B) is given by
Mas8) = [ Ay (6)h fan6)hy(6-0)ds . (147)

Note that for the vertical and lateral components of the turbulence
model, the impulse response functions ha and hb are not identical, thus

A{a , B) is not generally symmetric.

I T A e

As a consequence of the second assumption ébove concerh{ng truncafion
of the impulse response functions, %(a , 8) is non-zero only if o and 8
satisfy the condition
0o ,B8%2¢ , (148)
where tc/2 is the truncation time defined in figure 24, Because
k(o , B) is zero whenever o or B does not satisfy equation 148, it follows

that finite 1imits of integration can be used in equation 146,
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Now consider Schmidt's theorem concerning integral equations with

unsymmetric kernels (Ref, 49, 50). This theorem states that every func-

tioh'q having one of the two forms

qa) = | nla,B)n(B)dR

q(8) = | (o ,B) n(a) da

(149)

(150)

where £ is a finite interval, is the sum of its uniformly and absolutely

convergent Fourier series with respect to the orthonormal system wn(a)

in the first case and with respect to the orthonormal system xn(B) in the

second case, The functions v, and X,, are defined

relationships

W2 o0 = [{[ate. o) nts, 6 as}u, (o) a8
e €

A2 %, (8) = j{jh(a ) (s, 8) e} x, () do
£k

and are related to each other by the equations

Mbg@) = [ 2la,8) x,(8)dp
;

My(e) = [ A, )y d
£

by the eigenfunction

n=1,2,... (151)
n=1,2,...3 (152)
= 152,540 (153)
=]’2’-|'1 ) (]54)
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The two sets of functions wn(a) and xn(s) are known as the adjoint eigen-
functions of the kernel k(o , B), and the constants ln are said to be the
eigenvalues of the kernel.

Schmidt's theorem holds if the following.conditions are satisfied:

1) the functions #(a , B) and #(x , B)? are integrable -

2) the integrals S k(o ,8)%2da and fh(a ,B8)2dR are bounded

3) the functions n and n? are integrable,
A1l three of these conditions are satisfied for the inner integral of
equation 146. The first and second conditions will always be satisfied
by the well behaved Tinear systems of this report. The third condition
is satisfied because of the bandlimited nature of the white noise func-
tions (Ref. 47, page 170).

The set of eigenvalues An is assumed to be ordered according to
decreasing magnitude. It is also necessary that they satisfy Bessel's

inequality,

of A2Zs ” h(a, B)® dadB , : (155)
n=1 " £
Schmidt's theorem will be applied to the inner integral of equation

146. Before doing so, however, it is useful to make the following obser-
vation. Note that equation 146 expresses k as a function of time. Since
k is a stationary process however, its statistical properties cannot
depend upon the time at which they are evaluated, Thus, for the purposes
of calculating the probability distribution and Tevel crossing frequency
of k(¢), it must be permissible to fix ¢ at any desired value. The value
chosen in this report is zero. Therefore, upon taking equation 148 into

account, equation 146 can be written
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¢ t
w0) = 20+ "% o (- {[ny(-)nta.mas}an . (156)
0

0
This is the equation to which Schmidt's theorem will be applied.
According to the theorem, the bracketed integral of equation 156
can bé expressed as an absolutely and uniformly convergent series.
(s oo tc
n(-B)h(a,B)dB = }§ ¥ (a) || #(6,B)n,(-B)y (8)dBds . (157)
b Lo "n b n
o n=1 o
A1l functions are continuous on [0 ,tc], so the order of integration
can be interchanged and integration with respect to & carried out first.

By equation 154, the result is

t o ‘bc
Jcnb(-' B)h((! sB) dg = Z ann(u) J le(-B) Xn(B) dp . (158)
0

n=1 °
Equation 158 can be substituted into equation 156 and, because the series

is absolutely and uniformly convergent, integration with respect to a

can be carried out term by term. The result is

k(0) = rR(1 +R?) -1/2 Of A A, B, » (159)
n=1

where "

A n,( -a) wn(a) dp

(160)

X
[}
° “——ct

(161)

n

tc
5, = | my(-8)x,(8)ds .
[
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An and Bn are random variables with the following properties
1) 'An and Bn are normally distributed because they are
Tinear transformations of gaussian processes.
2) - The mean value of each An and B is zero.
-3) AN A are independent of all B, because n, is
independent of Ny, -
4) For all n and m the correlation of An with Am and

Bn with Bm is given by

t
C
E'{AnAm} = ” lpn(a)tpm(B) Cnanc(za - B) dodB (162)
0
t
C
E{B B} = ” X, (a)x,, () Cnbnéa - B) do.dB (163)
0
where C and ¢ are the correlation functions of n and n
NNy AL a b
respectively.

At this point a further approximation is introduced. Equation 159
expresses the non-gaussian portion of the vehicle response at an arbi-
trary instant (¢ = 0) as an infinite summation of random variables. 1In
order to apply this equation to the practical evaluation of the response
density function, it is going to be necessary to evaluate the eigenvalues,
An . Clearly it is unreasonable to expect to be able to evaluate more
than the first few of these. Consequently, if equation 159 is to be of
any practical use, it will be necessary that only the first few terms of
the series be significant. Results to be derived shortly will show that

the variance of the random variables An and Bn is approximately unity,
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and therefore the terms of equation 159 will decrease rapidly only if
the eigenvalues decrease very rapidly. It will be assumed that this is
the case.

Should this assumption prove invalid for some particular vehicle, it
would follow that & could be represented by a summation of random variables
with variances of comparable magnitude. These variables would be indepen-
dent; and, though not identically distributed, it would not be unreason-
able to expect that their sum would be nearly gaussian. In such a case
the vehicle response would be almost gaussian, and the Graham - Charlier
expansion mentioned earlier in this section would be a promising method
of approach.

Under the assumption that only a few terms of the expansion are
required to adequately represent k, equation 159 becomes
-1/2

N
X A,A B, . (164)
n=1

k(0) = r(1+R?)

This assumption will also permit it to be shown that the random variables
4 and B can be considered independent and (0, 1) normal.

Consider the correlation of An with Am » equation 162. The correla-
tion function of n, can be written as the Fourier transform of its power

spectral density. Noting the form of & shown in figure 22, and using

g

the transformation presented in equation 38, this relationship becomes

f

e
c (1) = J exp(£ UQT) d2 (165)
n_n
aa -0
(]

Substitution of this result into equation 162 and interchange of the order
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of integration gives

é{An.Am} = Tc{ Tc \pn(a) exp(ZUQ a)da}{ Te tpm(B) exp(-ZUQB) ds}dxz
-, © (166)

where it is assumed that y and ¥, are zero outside of the interval
[0 ,tc]. The bracketed terms of equation 166 can be identified as the
Fourier transform of b, and Yy

Inspection of the kernel defined in equation 147 will now show that
h(a s g) is zero if either o or g is zero, but h(tc »B) and h(a ,tc)
are not necessarily zero, It follows therefore from equation 151 that
y,(0) is equal to zero, but y,(¢,) is not necessarily zero. Thus y (a)
and wm(g) in equation 166 are continuous everywhere except possibly at
the points o and g equal to tc . At these points, ¥, and ¥, may exhibit
a simple step discontinuity. The theory of Fourier transforms (Ref. 51)
then requires that the absolute value of the Fourier transforms appear-
ing in equation 166 must decrease at least as rapidly as g ' for large
Q. The product of transforms must therefore decrease at least as rapidly
as g 2. Thus, for all possible combinations of the indices » and m
bounded by ¥, it must be possible to choose a single, finite value of
e, such that E{Anf%n} differs arbitrarily little from equation 166 with
2, replaced by infinity Equation 166 therefore reduces to

t
Bua, 4,3 2 [ 4,(0) v,(a) do (167)

m
Q

Since the functions ¢ _and y are orthonormal, it follows that
n n
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. 1if n=m
E{4, 4} 2 {0 F ontm (168)
A completely analogous result holds for equation 163.

Equation 168, along with the other properties of An and Bn listed
previously, implies that the An and Bn or equation 164 can be assumed to
be independent normal random variables with zero mean .value and unit
variance, It has been shown previously in this report that the product
of independent gaussian random variables has a x, probability distribu-
tion (Eq. 70). Hence, each term of equation 164 is a random variable

with a density function of the form

1 ||
pn(m)=1?E'—Ko[T] n=]’2,,-n ,IV, (169)
n ”n
where
2 - 2 2y~ 1y _ 2 2y =1
o, E{(Ranan) (1+R8%) ™ "} (Rxn) (1 +R?) . (170)

The reader will now recall that the object of all this is to obtain
an approximate expression for the characteristic function of the non-
gaussian portion of the vehicle response. It has just been shown that
this response can be represented as a finite summation of independent
random variables; therefore, the characteristic function in question must
be given by a product of characteristic functions, one for each term of
equation 164, It follows from equations 73, 169, and 170 that each term

of this product is of the form
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6,00 = D+ (2mmr H2+m) 172, amy

and the characteristic function of & is

N ' '
I [1+(2mRA £)2(1+82) "1 72 (172)
n=1 :

0(F) =

This completes the second step of the response density function deriva-
tion.

The characteristic function of the total vehicle response is now
obtained by multiplying equations 143 and 172.
RERT (2R £)2(1+82) "1 M2

¢,.(f) = exp[-2(m g, £)2(1+5*)
n=1
(173)

This completes the third step of the derivation. The density function
df r can now be found by numerically Fourier transforming equation 173.
Program PDIST presented in Appendix A of this report performs this calcu-
lation.

Computer programs EIGU and EIGVW, which will also be found in
Appendix A can be used to obtain the eigenfunctions and eigenvalues of
the vehicle response to the longitudinal gust component and to the
lateral and vertical gust components respectively. Note from equations
151 and 152 that, since the function Ao , B) is symmetric for the longi-
tudinal gust case, the orthonormal sets wn and X, will be identical. Thus
program EIGU computes only one set of eigenfunctions. The eigenvalues
obtained from either EIGU or EIGVW can then be used in program PDIST to

obtain the probability density and distribution function of the vehicle



125

response, The next section of this report will present a numerical

example showing the appliication of these programs.

Approximate Solution for Response Level
Crossing Frequency
Recall from equation 81 that the Tevel crossing frequency of a
stochastic process can be found from a knowledge of the joint distribu-
tioﬁ of the process and its derivative, |

7 (z) = prr’r-,(x Ry (178)
[1}

The reader should note that the explicit parameter dependence nota-
tion used in earlier sections of this report is not used here in order
to simplify notation. The results presented here will, of course,
depend upon the parameters of the turbulence model as well as the dyhamic
characteristics of the vehicle.

Previously in this section it was shown that the distribution func-
tion of the response could be approximated by means of a characteristic
function approach. It will now be shown that the joint distribution of
the response and its derivative can be approximated by an ana]ogou§
procedure. The steps to be followed are:

1) obtain the joint characteristic function of the

gaussian portion of the response and its deriv-
ative, ¢g,é

2) obtain the joint characteristic function of the

non-gaussian portion of the response and its

derivative, ¢k A
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3) multiply these results to obtain the joint character-
istic function of the complete response and its
derivative, ¢r,%
4) inverse Fourier transform to obtain the joint density
of the response and its derivative, Py, »
5) apply equation 174 to obtain the level crossing frequency
of the response, Nr(w)'
Refer to figure 22 and note that the derivative of the response can be
obtained by merely replacing the vehicle transfer function Hv(s) with
sHu(s) .

The joint characteristic function of the gaussian portion of the

response and its derivative can be found immediately.
0, 2(F1sF2) = expl-2(1+8%) " llmo, £1)2 + (noy £2)21) (175)

where the standard deviations can be obtained from the power spectral
density of e(t). This completes the first step of the derivation,

The joint characteristic function of k and k will now be approxi-
mated by extending the results obtained above for the characteristic
function of k alone. By equation 164, k can be represented as a finite

summation of random variables.

N
k(0) = R(1+&2) "Y/* ¥ 4B, (176)
n=1

It will now be assumed that a similar approximation applies to k,
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M
I a,C0D (177)

&(0) = (1 +R%) " M2
. m=1

where Am are the eigenvalues of the kernel analogous to %{a , B) of equa-
tion 147; and qn . Dm are (0, 1) normal, independent random variables.
The adjoint eigenfunctions of the % kernel are assumed to be gm(a) and
Xh(B). xIt js further assumed that the noise bandwidths, Qc 6f figure 23,
and the impulse response truncation times, tc/z of figures 24, are iden-
tical for bbfh % and %.

Now even though aT1 of the random variables An and Bn are mutually
independent, and all of the random variables Cﬁ and D are mutually
independent, it is readily verified that the variables An are correlated
with the variables Cﬁ and likewise for the variables B, and D, These

correlations can be shown to be

t
E{4, cm} = J q;n(a) ‘Pm(a)da (178)
0
tc‘
E{B, D} = I X, (8) X (8)d8 . (179)

In order to derive an approximate expression for the joint characteristic

function of k and k¥ it is convenient to introduce the following notation.

T

A=A 4; o 4yCr 0y oy O (180)
= _ T
B = [B) By oy ByDy Dy vae Dl (181)



A=£e{FZ%} (182)
B=E{BB"} ' (183)

Since the elements of 4 are independent of those in B, it follows that

the joint density of all the random variables in both 4 and B is given by

Pzg(z,?)=pz(5)p§(;), (184)
where
MN
p7(E) = 1(2n) 2 det(AN "' expr-zT (LA NF1,  (185)

and a similar expression applies tOZ?Eu The joint characteristic func-

tion of % and i is defined to be
b 4(F1s F2) = Blexp(i2n ks, +42nks,)}. (186)

Substitution for k and % from equations 176 and 177 gives

~

b 3(F1 2 F2) = Blexp(ZT CF)) (187)
where

¢ = amr(1+8) P 1d1ag(fy Ay seves FyAgs oy seena Fo AT
(188)

The joint characteristic function ¢k i can now be written in the inte-

gral form
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b ilfs £2) = [r2em) [en(3725) 7 ()p5(7) 457 .
® e | (189)
This expression can be integrated numerically to obtain the value pf
¢k x for any ch01ce of f1 and f This comp]etés the second step of the
derivation. o o
‘The third, fourth, and fifth steps of the derivation are carried out
by muitip1ying equations 175 and 189, applying a fwo-dimensiona] Fourier
transform, and then integrating as indicated in equation 174, Program
RLEVX, presented in Appendix A of this report performs all of the
computations described here including the evaluation of the covariance
matrices, equations 182 and 183. Use of this program in connection with
the eigensolution programs EIGU and EIGVW as shown in the next section
of this report thus provides an automated method of computing the level .
crossing frequency of a linear response to the non-gaussian turbulence

model. This completes the discussion of the level crossing problem.

Response to Multiple Inputs

The above remarks have all dealt with the case of a single component
of the turbulence model, Because the three components of the model are
independent processes, however, these results can be easily extended to
include the case of a vehicle disturbed simultaneously by two or all
three gust components.

Recall that the three quantities of interest are the response power
spectral density, distribution function, and level crossing frequency.
The power spectral density of a linear response to several independent

inputs is merely the sum of the spectral densities due to each input
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alone. Equation 142 can therefore be used to calculate a power spectrum
for the response to each gust component and the total response power ..
spectrum found by summing. ;, - e

The distribution function of the response to mu]tfp]e.jnputs.can;be
found through its characteristic function, Since the response to each
gust component is an independent process, the characteristic function of
the total response will merely be the product of the characteristic func-
tions corresponding to each component., Thus equation 173 could be used
to find the characteristic function of the response to each component of
the turbulence model, and the characteristic function of the total res-
ponse found by multiplying. This product could then be Fourier trans-
formed to yield the required distribution function.

A similar argument applies to the determination of response level
crossings, In this case it is the joint characteristic function of the
total response and its derivative which are found by multiplying the
joint characteristic functions corresponding to each gust component
alone. The joint density of the response and its derivative are then
obtained by Fourier transforming, and equation 174 is used to calculate

the Tevel crossing frequency.

Summary
This section has investigated the response of a linear vehicle to
the proposed non-gaussian turbulence model. An expression for the power
spectral density of the response has been presented (Eq. 142), and
approximate numerical procedures have been suggested for computing the
response distribution function (Eq, 143 through 173) and level crossing

frequency (Eq. 174 through 189). Finally, the problem of calculating
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response statistics induced by simujtaneous gust components has been
briefly discussed. In the next section of this report, the techniques
developed above will be used to calculate the responses of an aircraft -

autopilot system to the non-gaussian modél.



NUMERICAL EXAMPLE

The previous section of this report has derived techniques which can
be used to calcu];te the power spectral density, probability distribution,
and 1evei crossihg frequency of a Tinear responsé to the proposed non-
gaussian turbu]encq mode1. The purpose of this section is to illustrate
the application of these techniques to a simple prob]em,.and to compare
the results with those obtained using the gaussian model. The computer

programs mentioned will be found in Appendix A of this report,

Problem Statement

The aircraft to be studied is a STOL vehicle in cruising flight.
A]tifude is controled by a simpie autopiiot system using altitude error,
its integral, and its derivative in a feedback loop driving the elevator
so as to return the aircraft to the commanded altitude.

It is supposed that this aircraft - autopilot system is perturbed by
the vertical component of the non-gaussian model, and it is desired to
investigate the deviations from the commanded cruise altitude which the
system experiences. The power spectral density, probability distribution,

and level crossing frequency of the altitude error are to be calculated.

Model of the Vehicle
As mentioned above, the aircraft considered here is a STOL vehicle
in cruising flight. The commanded altitude is 305 meters (1,000 feet)
above sea level, and the true airspeed in équi]ibrium flight is 76 meters
per second (249.7 feet per second). The transfer function of the alti-

tude error due to vertical gust disturbances for this particular
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aircraft - autopilot system is

40,92[s] [s + (.0363 1 ,2083%)1[s +2,912]
(190)

z R

2(s) = . - )
w _ [s+(.0443i.013113)][s+ (.3035+,2908%)] [s+ (2,112 £ 2.404%)]
wheré the notation [s+ (a+4b)] has been used to indicate complex con-
jugafe'ﬁaifs of'po1es'or zeros. Note that this transfer function satis-

fieé'all of the conditions stated at the beginning of the previous

The derivative of the altitude error is
(191)

section (page 106).
z . 1
=(s) =s2(e) .

In order to apply the computer programs presented in the appendix

of this report, it will be necessary to express these two transfer

functions in partial fraction form.
[-4.016 +8.026%]

[-7.946 +5.5387]
+
[s +(.03035 + .2908%)]

2 -
=>(s) =
[s+(.0443 + .0131Z)]
(192)
[5.964 7 4.8167]
+
[s +(2.112 £ 2,404%)]
. {.158 3 ,2207] {3,552 % 1,2687]
Z(s) = +
[s +(,0443 + ,0131%)] [¢ +(,3035 % ,2908%)]
(193)

[24.18 74,1647

+
[s+ (2,112 £ 2.404%)]
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_ - Turbulence Model Parameters
_ The'tdrbulence model used here is the vertical component of the

'nohfgaussian model, The parameters of the model are chosen to be

A
Lw = 142 m (465 ft)
o, = 0.305 m/sec (1 ft/sec) + (194)
R -1.0.
w J

These parameters are typical of those which would be encountered at an
altitude of 228 meters (750 feet) over plains in unstable atmospheric
conditions. With this choice of o, and Lw » the power spectral density
of the turbulence becomes

(1+60,50002%)

¢ww(9) = 2.10 . (195)
(1+20,20002)2

The probability density and distribution functions of the gust velocity
will be found in figure 15 on page 61, and the normalized level crossing

frequency is given in figure 17 on page 80,

Response Power Spectral Density
The power spectral density of the altitude error is obtained by sub-
stituting equations 190 and 195 into equation 142. Figure 25 presents
the resulting spectrum for positive values of @, The complete spectrum
is, of course, symmetric about the origin, The variance of the altitude
error can be calculated by integrating the power spectral density as

indicated in equation 7. The result is
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or2 = 13.26 (m)? [142.8 (ft)2] (196)

Note that the power spectral density and varijance are independent of the

turbulence model parameter R,

104 - T - '
;j——\103 - A
o
\257’101 - 1
ey .

106 10° 104 103 102 107!
Q (cycles/meter)

Figure 25.--Power spectral density of the
altitude error.

Response Distribution Function
The probability distribution of the altitude error will now be cal-
culated. This computation is in two parts,
1) wuse program EIGVW to compute the significant eigenvalues
of the response
2) use these eigenvalues as input to program PDIST to obtain
the response probability distribution‘function.
The first step of the procedure is the calculation of the altitude error
eigensolutions. The transfer function of the system (Eq. 192) and the

turbulence model parameters (Eq. 194), when used as input to program
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EIGVW, result in the eigenvalues and adjoint eigenfunctions presented in
figure 26. Note that program EIGVW cannot compute the éigenvalues with-

out also computing the corresponding adjoint eigenfunctions.

-I'E'AI =3.17 ¥ (@)

0 L] L) 1
-.5f x1(B)

—1-0'
1.0

-1.0%
1-0;‘

.5*‘
0|
-5t Py (@)

-1 '0 L L L 1
102 10-1 100 10t 102

a,B (sec)

>\1, = .42 XQ(B)

EIGENFUNCTION MAGNITUDE (dimensionless)
&
|
@
(o)}

Figure 26.--Adjoint eigenfunctions and eigen-
values of the altitude error.

The second step in computing the response distribution is the use of
the eigenvalues of figure 26 as input to program PDIST. This program has
computed the probability density and distribution functions presented in
figure 27. (Although used as input to PDIST, the eigenvalues of the

response were not actually used in computing the gaussian distribution.
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In fact, the gaussian result is merely the well known normal distribution

which could be evaluated without the use of a computer

-5?‘ . -9999 B .
non-gaussian gaussian
" model (R=1) .99 F mode]
cff=3.64 (m) 9t non-gaussian
) -3 g 3048 (m/sec) ) 5 model (7=1)
(3 = sl
Q gaussian ™ _
o .3048 (m/sec
al ol 3 (m/sec)
0 A .0001 A Ll L L1 L )1 1 L2
g 1 2 3 -6 -3 0 3 8
x | _altitude error ig_[ altitude error
9% 1 %ltitude error % L%1titude error

Figure 27.--Probability density and distribution functions of the
altitude error in response to both gaussian
and non-gaussian turbulence models.

Note that the non-gaussian model predicts that the occurrence of
large altitude errors will occupy a much greater percentege of time than
indicated by the gaussian model. For example, the computed values of
the gaussian and non-gaussian distribution functions for a response mag-
nitude of 3.5(37 are 0.99977 and 0.99860 respectively. These numbers
imply that the absolute value of the altitude error predicted by the
gaussian model will exceed 3.50r about 0,05% of the total flight time
while the error predicted by the non-gaussian model will exceed this
level about 0.28% of the time. These predictions differ by more than a

factor of five.
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Response Leyel Crossing Frequency

Consider now the level crossing frequency of the response, This

calculation is in three parts,

1) compute the significant eigenvalues and eigenfunctions

of the a]titude error by means of program EIGVW

2) compute the significant eigenvalues and eigenfunctions of

the altitude error derivative by means of program EIGVW

3) use the results of the first two steps as input to program

RLEVX and obtain the level crossing frequency of the

altitude error.

The eigensolutions of the altitude error have already been calcu-

lated, and are presented in figure 26. The eigensolutions of the alti-

tude error derivative can be calculated using equations 193 and 194 as

input data to program EIGVW. The results are presented in figure 28.

EIGENFUNCTION MAGNITUDE (dimensionless)

1.0
5
0
-.5

-1.0
102 101 100 101 102

a, B (sec)

¥, (o)

[ A, =2.37

Figure 28.--Adjoint eigenfunctions and

eigenvalues of the altitude
error time derivative.
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A1l of these eigenvalues and eigenfunctions (Figs. 26 and 28) are
now used with program RLEVX to compute the level crossing frequency curves

presented in figure 29. It should be noted that the gaussian result
10~

3.64 (m)
.3048 (m/sec)

[t}

5

5

non-gaussian

108 model (R=1)

3

() (crossings/meter)

gaussian
=~ 10~% mode1

W% 1 23 4586 7 8
x [ altitude error }
O Saltitude error

Figure 29.--Level crossing frequency of the
altitude error in response to both

gaussian and non-gaussian turbulence models.
follows directly from Rice's equation (Eq. 12), and could have been
obtained without use of a computer.

Note that the non-gaussian model predicts that large altitude errors

will occur much more frequently than indicated by the gaussian model.
For example, the crossing frequencies of the 40f response level predic-
ted by the gaussian and non-gaussian models are 4.274x10"7 and 7.116%x107°
crossings per meter respectively. The gaussian value implies that the
40} Tevel will be exceeded once every 2,340 kilometers, while the non-
gaussian value implies that this level will be exceeded once every 141
kilometers. These results differ by a factor of almost 17. Furthermore,

the ratio of the two results increases rapidly with increasing response

magnitude. At the SOP level they differ by a factor of well over 100.



CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The previous sections of this report have developed a new model of
atmospheric turbulence which is proposed for use in aircraft design work.
.In this section, the principal conclusions are summarized and some areas

- requiring further investigation are discussed.

Principal Conclusions

This report has reviewed the problem of modeling continuous atmos-
pheric turbulence for the purposes of aircraft design. The model now in
wide use; which assumes turbulence to be a homogeneous, stationary gaus-
sian process with a specified power spectral density; has been discussed
and its properties compared with experimentally measured characteristics
of atmospheric turbulence. This comparison has shown that the gaussian
model does not properly reproduce the number of high velocity gusts which
are encountered in the atmosphere. Neither can it properly model the
observed patchy character of turbulence or the experimentally measured
distributions of velocity increments.

A modified form of the gaussian model, the gaussian patch model, has
also been considered. This model is similar to the gaussian model, but
assumes large regions of turbulence to be composed of independent patches
which are homogeneous, stationary, and gaussian. The intensity of the
turbulence varies randomly from patch to patch, but is assumed constant
within each patch. The patch size is assumed to be sufficiently great
that transient effects between patches can be neglected. It has been
shown that this model cannot reproduce the distributions of velocity
increments measured in turbulence. Furthermore, experimental measurement

of patch sizes implied by this model has shown that the most intense
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patches are so short (on the order of 2-3 km) that in many cases the
neglect of transient effects between patches cannot be justified.

A non-gaussian model of turbulence has been proposed, This model has
been formulated from the idea of representing the patchy character of tur-
bulence by a product of independent gaussian processes. The new model can
be viewed as an extended or generalized form of the gaussian model, and
the gaussian model is inc1uded.as a special case.

The statistical properties of the proposed model have been derived
and compared with some experimentally measured properties of low altitude
atmospheric turbulence. The results have shown that the power spectral
densities, probability distributions, and level crossing frequencies
observed in the atmosphere can be modeled quite well. However, it has
also been shown that this model, 1ike the gaussian and gaussian patch
models, does not reproduce the velocity increment distributions of turbu-
lence. The reason for this difficulty has been discussed and a modifi-
cation of the model has been suggested which may correct the problem.
Until a solution is found, it is suggested that the proposed model (as
well as the gaussian and gaussian patch models discussed above) is not a
good representation of the high frequency components of turbulence.

Hence, these models are probabily not suitable for studies of high
frequency vehicle responses such as those involving structural modes.

Methods by which the non-gaussian model can be used to calculate
vehicle response statistics have been investigated and techniques for
computing the power spectral density, probability distribution, and level
crossing frequency of linear responses to the model have been developed.
These results have shown that the response power spectral density can be

obtained by the usual methods of linear system theory, and therefore
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calculated without difficulty. Evaluation of response probability dis-
tributions and level crossing frequencies, on the other hand, has required
calculation of the eigenfunctions and eigenvalues of a certain kernel
function which is, in general, unsymmetric, Computer programs presented
in Appendix A of this report have been developed as a means of automating
these calculations.

The altitude response statistics of a simple, linear, STOL
aircraft - autopilot system subjected to the vertical component of the
non-gaussian model have been calculated. The results have shown that,
compared to the gaussian model, the non-gaussian model model may predict
more than a hundredfold increase in the occurences of large response

magnitudes.

Suggestions for Further Research

The turbuience model and application methods developed in this
report can be considered as only the first step in producing a practical
tool for use in aircraft design work. Additional research in several
areas Will be required if this goal is ever to be attained. The follow-
ing is a 1ist of several areas which the author believes to be topics of

useful research regarding this turbulence model.

Improved Data Fitting Procedures

It has been shown that the LO-LOCAT data presented in this report
can apparently be fit better by the non-gaussian turbulence model than
by the currently used gaussian model. The results of Table 4, however,
indicates that it is important to choose the correct goodness-of-fit cri-

terion if satisfactory results are to be obtained. Thus some rational
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prodedure for obtaining the best over-all fit of the data must be found.

This procedure would have application not only to the non-gaussian turbu-
lence model described here, but also to any other turbulence models which

might be proposed in the future.

The proposed non-gaussian turbulence model contains a paraﬁeter

whiéh controls its probability distribution and ieveT crossing frequency.
Results presented previously in this report (Table 4) indicate that_thé
vé1ue of this parameter which leads to the best fit of experimental turbu-
lence data depends, at least partially, on variables such as atmospheric
stability, surface roughness, and height above the surface. It should be
possible to carry out a regression analysis to determine the relationship
between these variables and the parameter. In order to be of practical
value, this analysis will have to consider much more data than used in

the present report.

Improved Mathematical Development

The results derived in this report have relied very heavily upon
heuristic assumptions such as the use of band limited white noise and
truncated impulse response functions. These assumptions can surely be
relaxed in a rigorous treatment. Although increased rigor would not be
expected to alter any of the results which have been presented, it would
almost certainly lead to a better understanding of the non-gaussian model
and a greater appreciation of its limitations, _

An especially useful result of such an investigation might be a

rapid procedure for obtaining approximate solutions for response statistics.
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It is intuitively obyious, and easy to show from the development of equa-
tions 144 through 189, that the vehicle response statistics become iden-
tical to the statistics of the turbulence as the bandwidth of the vehicle
transfer function becomes infinitely wide with respect to the bandwidth
of the turbulence. On the other hand, as the vehicle bandwidth becomes
indefinitely narrow with respect to that of the turbulence, the Gerschgorin
Circle Theorem concerning upper bounds of eigenvalues (Ref. 49) requires
that the non-gaussian portion of the vehicle response become the sum of
an infinite number of independent, identically distributed random vari-
ables. Hence, the Central Limit Theorem (Ref. 37) requires that this
response become gaussian, and therefore the total response of the vehicle
will become gaussian. It would be extremely useful to develop a method
for estimating (or at least bounding) response statistics for the case of

jntermediate bandwidth vehicles.

Extensions of the Model

Several possible improvements of the turbulence model proposed in
this report merit further investigation.

1) Reference 45 has suggested the possibility of defining a
patchiness parameter for the non-gaussian model. It
would be interesting to see if this parameter could be
related to meteorological variables of turbulence, and
if this parameter has any significant effect upon response
statistics.

2) Nothing in the mathematical development presented here
has prohibited the use of linear filters with irrational

transfer functions in the turbulence model. This
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suggests the possibility of using such filters to
obtain the yon Karman power spectral densities rather
than the Dryden spectra assumed in the present report.
The present results are concerned only with a "point"
model of turbulence, that is, the turbulence field is
represented by three orthogonal gust components which
are assumed to act at the vehicle center of gravity.
Turbulence, however, is a distributed phenomenon; and
for large aircraft it is important to take into

account the distribution of the gust field over the
surface of the vehicle. It appears that the spatial
distribution representation used in reference 34 can,
in principal, be incorporated into the non-gaussian
model of this report without difficulty. This could be
accomplished by adding an independent rolling gust compo-
nent to the present model and using the vertical and
lateral gust components of the present model in con-
junction with an appropriate time delay to represent
gusts occuring at the vehicle tail, Unfortunately,

the computational procedures required to calculate
vehicle responses to this model would become very
unwieldy because it would be necessary to consider
correlated inputs to the system rather than indepen-
dent inputs as assumed in this report. Thus, either

a different approach to the spatial distribution prob-
Tem will have to be found, or the computatipnal proced-

ures will have to be greatly speeded.
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4) It has been shown that the velocity increment distri-
bution of the non-gaussian model do not match those
observed in the atmésphere. As discussed previously
in this report (page 84), it appears that this prob-
lem might be corrected by modifying the transfer

functions used in the model.
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APPENDIX A
COMPUTER PROGRAMS

The purpose of this appendix is to present a number of computer pro-

grams which are of use in working with the non-gaussian model, and to

give examples of their use. Programs to be presented are:

].

PDIST - a program to compute probability distributions of
either the non-gaussian model or vehicle responses to the
model

LEVXNG - a program to compute universal level crossing
frequency curves for the non-gaussian model

INCPD - a program to compute probability distributions

of the non-gaussian model velocity increments

EIGU - a program to compute eigenvalues and eigen-
functions of vehicle responses to the longitudinal com-
ponent of the non-gaussian model

EIGVW - a program to compute eigenvalues and adjoint
eigenfunctions of vehicle responses to the vertical or
lateral components of the non-gaussian model

RLEVX - a program to compute level crossing frequency

curves of vehicle responses to the non-gaussian model.

Listings of all programs and subroutines will be found at the end of this

appendix.

A1l coding is in FORTRAN language, version 2,3 for Control

Data 6000 Series Computer Systems. Modifications required for compatibil-

ity with other systems should be slight.

The sample programs to be presented here were run on the University

of Washington CDC-6400 computer using the U of W version of the Control
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Data RUN compiler, and fhe SCOPE 3.4 operating system, Storage require-
ments and execution times reflect this Operating,en§1ronment. |
Nuﬁéfous comment cards have been incorporated into each of the card
. decks presented here as an aid in understanding their operation. The

input data required by each program is also described by comment cards.

Program PDIST
PDIST is a program which computes probability distributions for both
the non-gaussian turbulence model and vehicle responses to the model.
The example presented here calculates the probability distfibution of

the model for an R parameter value of 1.0.

Card Decks

The following card decks were required to produce the sample calcu-
Tation presented here:

PDIST

FFT

FFTRS

Input Data

The following five data cards were used in producing this example.
The meaning and format of these cards are explained by comments in the

listing of program PDIST.

11 21 1 b1 1 1 1

€ST OF POIST, PROBABILITY DIS[TRIBUTION |OF NON-GAUSSIAN MOD FOR R PARAMs = 1,0
1.0000000600E+p

1.0000000000E+0
1.0
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Results
The above named card decks were compiled, loaded, and executed on ~
the University of Washington CDC-6400 computer system. Storage require-
ment including I/0 buffers and all system programs was 16,4068'words;
Execution, including compilation and loading, required 3;, seconds of

central processor time. The following output was generated.

TEST OF PDISYT, PROBABILITY OISTRIBUTION OF NON~GAUSSIAN MODEL FOR R PARAMe = 1.0

VARIANCE = 1.00000
NUMBER OF NON~GAUSSIAN EIGENVALUES = 1
EIGENVALUES ARES

1.020C0000E+00

SIGMA RATIO OF fURBULENCE MQOEL = 1.00000
SUM OF EIGENVALUES SQUARED = 1,0000030E+00

FOR VARIANCE OF 1.08000000E+00Q
NON=GAUSSTAN VARIANCE = 5.0000000E-01
GAUSSIAN VARIANCE INCLUDING CORREGCTION FOR
NEGLECTEDO EIGENVALUES = 5,000C000E-01

FOR TOTAL VARIANCE OF UNITY

NON=-GAUSSTAN VARIANCE = 5,.0000000E-01
GAUSSIAN VARIANCE INCLUDING CORRECTION FOR
NEGLECTED EIGENVALUES = 5.000G030E~01

SQUARED EIGENVALUES SCALED TC GIVE CORRECT NON-GAUSSIAN
CONTRIBUTION TO UNIT YARIANGE:
5+00000060E-01
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TEST OF PDIST, PROBABILITY OISTRIBUTION OF NON-GAUSSIAN MODEL FOR R PARAN, = 1.0 .

NORMALIZED STOIZED DISTRIBUTION UNNORMALIZED NONSTDIZEO
VARIABLE PROBABILITY FUNCTION VARIABLE PROBABILITY
X/7SIGMA X DENSITY X DENSITY

0.C00 4,455E-01 5+60000E-02 Q. Lo 455E-01
« 050 4e447E-01 5.22262E-01 S.000E-02 Lo LT7E-01
«100 Le®23E-01 Se4444L5E~01 1.000£-01 4.423E-01
150 Loe334E~01 Se E6LEIE~0L 1.500€~-01 4¢384E~01
«200 4.330€E-01 S« 88260E-01 24000E-01 4.33C€~01
«250 4.261E-01 €e097641E-01 2.500E-01 4.261E~-0¢
+300 4,178€-01 6430844E-QL 3.000E-01 L.178€-01
«350 L,083E-01 6.51583E-01 3.500E-01 4.083E-01
<400 3.976E-01 6 71ES6E-01 LeB00E-01 3.976E~-01
o458 3.859E-01 6o €1249E-01 4.50LE~01L 3.859€E-01
«500 2,733E-01 7.10231E-01 S«000E-01 3.733E-01
«550 3.598E-01 7+28561E-01 5.50CE-01 J+598E-02
«600 3.457E-D1 7.46202E-01 6.0005-01 3.457€-01
«650 3.311E~-01 7.€3125E~-01 6.500E-01 3.311E-01
+700 3.161E-D1 7.793C6E-01 7.006E-01 3.161E-01
750 3.008E-01 7.94730E-01 7.500E-0L 3.008E-01
«801° 2.854€E~-01 8.09387E-01 8.00CE-01 2.854LE-01
«850 24700E-D1 B8e23274E~-D1L 8+50CE-D1 2.700E-01
+ 930 2.547E~01 8. 36392E-01 9.000E£-01 2.547E-01
«950 2.396E-01 8, 4B8749€-01 9.5GuE~01 2.396E-012
i.c00 2,24 8€-01 84 E0357E-01 1.000E+80 2.248E-01
1.050 2.103€E-01 8.71Z34E-01 1.05CE+00 2.103€-012
1.100 1.963E~-01 8.81399E-D1 1.100E+00 1.963E-01
1.150 1.823€E-01 84S0876E-01 1.150E+00 1.828E-01
1.209 1.6995-01 8.99£91€E-01 1.20CE+00 1.699E-01
1.250 1.575€=-01 9. 07872E-D1 1.25CE+00 1.575E=-01
1.308 1.457E-01 S+ 15450E~01 1.300E+00 1.457E-01
1.353 1.346E-01 Ce22455E~01 1.350E+00 1.346E-01
1.408 1.241E-01 9,28¢19%E-01 1.400E+00 1.241€-01
1.450 1.142€-01 Se34874E~-01 1.45CE+00 1.142E-01
1.500 1.050E-01 9, 40352E~31 1.500E+00 1.050E-01
1.550 9.638E-02 Se4SIBLE-DL 1.550E+00 9.638E-02
1.600 8.,838£=-02 9.50601E~01 1.60UE+00 8.838E-02
1.650 8.096E~02 S+54232E-01 1.650E+00 8,096€-02
1.700 7e41DE-G2 9458106E-01 1.700E®0Q0 7«410E~02
1.750 6.777E=-02 C,E1€50E-01 1.75GE+30 6.777E-02
1.800 6e194E=D2 9.,64891E-01 1.80LE+DD 6e194E=02
1.8580 5.659E-02 9.E78E52E-01 1.850E*00 54659E~02
1,900 5+168E-02 9, 70557E-01 1.90CE+00 Se168E=-02
1.950 4e719E-02 €,73027E~-01 1.950E+00 4e719E~-02
2,000 44,309E-082 3,75283€E-01 2.0G0CE+00 44309E-02
2,050 3.934E~-02 Se77342E-01 2.CSCE*0D J.934E-02
2.100 3.592E-¢2 9.79223E-31 24100E+00 3+592E-02
24150 3.281E-02 9.80S43E-01 2.150E+00 3e281E~-02
2.200 20997E~-02 9. 82508E~-01 24200E+00 24997E-02
24250 2.739€E=02 G.83S41E-01 24250430 24739E-902
2.300 2.503E=02 S. 85250E~-01 2.300E+0D 2¢503€-02
24350 2.289E-02 S. E6448E~01 2. 350E+00 24289€E-02
2.400 2+ 094E-02 9, 87¢43€-01 2.400E¢00 24094E-02
24450 1.917€-32 9. 88545E~01 2.450E+40 1.917E-02

24500 1.756€E-02 9. 89463E-01 2.50CE+00 1.756€-02
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TEST OF PDIST, PROBABILITY OISTRIBUTION OF NON-GAUSSIAN MODEL FOR R PARAM. = 1.0

NORMALIZED STDIZ2E0 . DISTRIBUTION UNNORMALIZED NONSTOIZED
VARIABLE PROBABILITY FUNCTION VARIABLE PROBABILITY
X/SIGMA X DENSITY X DENSITY

2+500 1.756E=-02 9, 89463E~01 24500E+00 1.756E-02
24550 1.608E~-02 9.90303E~-01 2+550E+00 1.,608E-02
2.600 147 4E=-02 €e€1073E-D1 2.690E+00 1.474€-02
24650 1.352€-02 S.S1779E-01 2.650E+00 1.352&-02
2,700 " 1e241E~-02 S.€2427E-01 24700E+0D 1.241E-02
2750 1.139E-02 9.93022E-02 22754E+00 1.139E-02
2.800 1.646£-02 9+€3568E~01 2.800E+80 1.046€E=-02
2.850 9.612€-03 S.S4069E-01 20 850E+00 9.,612E-03
2.908 34836E-03 9,94530E-91 2.9C0E+0Q 8,336E-83
2.950 8.126E-03 9.S4¢54E-01 24950GE+00 8+126E-03
3.000 7T476E-03 9. €5344E-01 3.00CE+Q0 7.476E-03
3.050 6+881E-03 9.¢5702E-01 3.05CE¢00 6+.8B81E-03
3.100 64335E-03 8.$6033E-01 3.100E+00 64335€-03
3.150 5.835E-13 9.96337E-01 Jo153E+00 S5+835E-03
3.200 5¢375E~03 9.S6€17E-01 3.20C0E+80 54375E-03
3.250 44954E-23 9.6 E75E-01 3.25LE+00 44954E=-03
3.300 4.567E-03 94€7113E-01 3.300E+00 44567€E-03
3.350 4.211€-903 S.€7332E-01 3.350E+00D 4.211E-03
3.400 3+8845-03 94S7534E-01 3.400E+0G0 3.884E-03
3.450 3.583E-03 Ce€7721E-01 3.450E+00 3.583E-03
3.500 3.306E=-03 9487893E-01 3.50JE#00 3.306E~-03
3.550 3.852€-03 9.98052E-01 3.550E+00 3.052E-03
3.600 24817E-83 9.58199E-01 3.600E+00 2.817E-03
3.650 24601E-03 Q.S L334E~01 3.650E+00 24601E-03
3.700 24402E-83 S.98459€~-01 3+.700E+00 2.402E-03
3.750 2.219E-33 9.58574E~-01 3.750E+00 24219E-03
3.800 2.050€-03 S.C8€E81E-01 3.800E+00 2.050E-03
3.850 1.894E-03 9.S8780E-01 3.850E+00 1.894E-03
3.900 1.75¢E-03 S.28871E-01 3.900£+00 1,750E-03
3.95¢0 1.618£~03 9.98S55E~-01 3.95GE+00 1.618E-03
4%.000 1.495E-03 S4S9033E£-01 LeO0UCE+0D 1,495E-03
4,050 1.3835-93 2.99104LE-01 4.05GE+00 1.383E-03
4e1C0 1.,278E-03 Se€CG171E-01 Le10LE+0D 1.278E-03
4e150 1.182€-03 94€9232E-01L G 150E400 1.182E-03
4.200 1.093€-03 94€9289E-01 4.200E+00 1.092E-03
k. 250 1.,014€-03 Se €9342E~01 Le25GE+00 1.511E-03
4300 9.356E~04 G,69291E-01 4.300E+00 9.356E-04&
44350 8.6575=04 94 S9436E-01 4.35GE+00 8.657E-04
Lo 400 8.010E-04 S.S9477E-01 4.400E+0C 8.010E-0%
4.450 Te412E-04 9,99516E~01 Le4S53EHD0 7. 412€E-0%
4.500 6. 860E=-04 9469551E~-01 4.500€E+00 6.860E-04
44550 6e349E-04 S.€9c34E~-012 4.S550E408 6e349E-C4
4600 SeB877E-04 2,29€45E-01 L4.600E+30 SeB87T7E=C4
4e650 SellLiE~04 €.€9€43E~01 Le650E+00 Selslh AE-Cl
4.709 S5+037€~-04 94 €9€69E-01 4.,700E+00 S+037E-04
4,750 heGOLE-OL S499€94E-01 4750400 4.664E=-04
4.800 4e318E-00 8,59716E~-01 4,800€+00 4.318E=0%
b.850 3.999E~-0% e €9737E~01 LeB50E+08 3. 999E-04
4.900 3.704E-08 8, €9756E~-01 4.900UE+0D Z.704E-D%
40950 3.430E-04 S,€9774E-01 4e950E¢+80 3.430E-04

5.000 3.177E~-04 9. €9791E~01 5.000E+00 3.177E-0%
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TEST OF PDIST, PROBABILITY OISTRIBUTION OF NON-GAUSSIAN MODEL FOR R PARAM, = 1,0

NORMALIZED STOIZ2ED DISTRIBUTION UNNORMALIZED NONSTOIZEOD
VARIABLE PROBABILITY FUNCTION VARIABLE PROBABILITY
X/SIGMA X DENSITY X DENSITY

S.000 3.177E-04 S¢99791E-04 5«000E+00 J177E=0N
5.050 2+943E-04 9,$9806E-01 S+050E+00 24943E-0%
5.140 2. 727E-04 Se$9220E~-01L 5.100£+00 2e727E~-04
5.150 2.526E-04 C.tS233E-01 S.150E¢20 2.526E-0%
5.200 20340E~-04 9.€9845E~01 54200400 2.340E~04%
5250 2.169€E-04 9,$9857E~-01 5.25CE+00 2.169€E-04
5.300 2.009E~-84 3.69€867E-01 5.300E¢00 2.009€E-04
5.350 1.862E~-04 9. €9€77E-01 5.35GE+Q0 1.862E~0%
5.400 1.,726E-04 9,c9886E£-01 S«403E+T0 1.726E=04
S5.458 1.599E-04 C¢€9E8SLE~-OL 5.45CE+00 1.599E~-04%
5.500 1.482E-04 SeS9€02E-01 5,500E+00 1.482E-08
54550 1.374E-04 S, S9¢L9E-01 S5.550E+00 1.374E~04
5.600 1.274E-0% 9.939C45E~01 S«6GGLE®OD 1.274E~04
54650 1.181E-04 9.S9%21E~01 5.,650E¢00 1.181€-04
5.700 1.695E-04% 9.99¢27E~01 5«70UE+DD 1.095€E~04
5750 1.015S~-04 Qe €9C32E-D1 5.750E+00 1.015E~04
5.800 G, 40 9E-~05 Ce€QC37E-0L 5.80CE®00 9.409€-05
5.850 84724E-D5 Ce€9CU2E-01 5.850E+00 84724E-05
5.900 8.090E-G5 9¢99S46E~01 5.900E£+00 8.090E-05
5.950 7.501E~05 €, S9S50E~01L 5.950E+00 7.501E-05
6.000 64956E~05 9.99¢54£-01 6.,000E+00 6¢956E-05
6,850 64451E~-95 Q,99C57E-014 6.050E+00 6e 451E=05
6.100 5.983E~-65 9,99C60E~01 64100E+00 5¢983E-05
64150 Se549E-05 9. $9¢63E-01 6+15CE+00 Se549E-05
6.200 5.147E=35 9,59%66E~01 6.230E+0G Sei47E-CS
64250 Lo774E=D5 9.99¢68E-~01 64250E+00 Le774HLE=US5
6.300 4.428E-05 Se €9S70E-01 6+.300E+00C 4e428E-05
64350 4.407E=05 9.99¢S73E~01 6.35CE+00 44107E-05
6.400 3.810€-05 94 €9C74E-01 6.40O0E*NU 3+.810E-05
64450 3.535€-05 94S9CS76E~0L Be4SCE+Q0D 3+535E=05
6,500 3.272€E=-05 9,€9¢978E-91 6.500£400 3+279E-05
64550 3.042E=-05 9.€9S80E-01 6+5SGE+00 3«04 2E~-0S
6.600 2.823E-05 3.S9¢B1E~GL 6.60CE+DG 24823E-05
6.650 2.619E-05 S.€9¢82E~01 6+65CE+D0D 24619E-05
6.700 2.430€E-05 9.99S84E-01 6.70CE+D0Q 2¢430E-05
64750 24255E=05 9, 99S8SE~-01 6.75GE+00 24255E-05
64800 2.092E-05 Se €CC86E-01 6. 800E+0D 2.092E-05
64850 1.942E-05 9.99987E-01 6.850E+00 1.942E-05
64900 1.802E-05 SeC9CcEBE~0L 6.90LE+00 1.802E~05
6950 1.672E-05 9,€9¢89E~-01 6495CE®00 1.672E-05
7.600 1.552E-05 9e€9¢C0E~01 7.0C0E*QD 1.552€E-05
7.050 1, 440E-05 €. S9S20E~D1 7.050E¢00 1, 440€E-05
7.100 1.337€-05 9.69¢€91E~01 7.1LUE+0D 1,337E-05
7.158 1.241E-05 Se$9€92E£-01 74150E+00 1.241E-05
7.200 1.151€-05 9..99992E~-01 Te20uE+0S 1.151€-05
7.250 1.069€=-05 94+ €G8CCS3E~-0L 7.25CE+00 1.,069E-05
7.308 9.920E-86 24€9<€93E-01L 7.300E+00 9.920E-06
7.350 9.208E~06 Se99CS94E-TL 7.350E¢00 94208E-06
7.400 B4S54BE-~05 C.CCCS4E-D1 T440CE+D0 8.548E~B6
7+450 7.935E~06 G4 €9S95€E-01 7450E+00 7+935E=06

7.500 7.366E~-06 94€9C€C5E-01L 7.500E+00 7.366E-06



161

TEST OF PDIST, PROBA3ILITY DISTRIBUTION OF NON~GAUSSIAN MODEL FOR R PARAM. = 1.9

NORMALIZED STDIZED DISTRIBUTION UNNORMALIZED NONSTDIZED
VARIABLE PROBABILITY FUNCTION VARIABLE PROBABILITY
X/SIGMA X DENSITY X DENSITY

T.500 7.366E~-06 9.€9¢c95€E~01 7.500E+00 7+366E=-06
74550 6.838E=-06 9.59¢95E-0L 7+550E+400 6.838E-06
7.600 6.348E~06 94S9S96E~01L 7.600E+00 6e 348E-06
7.650 5+894E~06 9. €9¢96E~01 7.650E¢00 5.894E-06
T«700 S.472€-96 9.99€96E~-01 7.70CE+00" 5¢472E-06
7.750 5.080E~-06 GeS$9597E-01 7+750E+00 5.080E~06
7.800 4,717E~06 9,$9€397E-01 7.800E+00 4oT17E-06
7.850 4,380E-06 9¢S9€97E-01 7.850E+00 44383E~06
7.900 4. 067E=-06 €eSCCO7E-01 7.S00E+00 4.067E-06
7.950 3.776E-06 9,S9¢97E-01 © Te95JE+00 34776E-06
8,000 3.506E~-06 9e€9cS8E-O1L 8.000E40G 3.506E-06
8.G50 3.256E~-06 8.59¢93E-01 8.350E+00 3+256E~-06
8.100 3,023E-06 8s €9993£E£~-01 8.1G8E+Q0 2.023E~-06
8.150 2.808E-06 9.S9cCBE-NL 8.150E+00 2.808E-06
8,200 2,607E-06 9. €9€98E~01 8.200E¢00 2.607E=-0E
8.25¢ 2.421E-06 2. $9599E~D1 B8+250E¢00 2.421E-06
8.300 2.249E-06 9. €9€93E-01 8+300E+00 24249E-06
3.350 2.088E-06 9.99¢99E~01 8.350£+00 24088E-06
8.400 1.939E=-06 9,29¢99E-01 8.400E+00 1.939E-06
8.450 1.801E-06 999999E-01 8.450E+00 1.801E-086
8,500 1.,673E-06 94 S9¢€99E-D1 8450CE+0D 1.673E-06
8,550 1.554€E-06 9,99¢99E-01 8.5502+¢00 1.554E-08
84600 1.443E-06 Se €9€99E~0L 8.640E+00 1.%43E-06
8.650 1.340£-96 8¢ 99S€99E~-01 8.650E+00 1.340E-06
8.70C 1.245E-06 Qe $9€99E~01 8.70GE+0D 1.245E=-06
8.750 1.156E-06 9¢899299E-01 B8.75GE+00 1.156E~06
8.800 1.074E=06 9,59999E-01L 8,800€E4+00 1.074E-06
8.850 9,9785-87 e €9¢93E-01 84850E+00 9.978E-07
8.900 9, 269E-07 Se€9C99E~-01 8.900E+00 9.269€-07
8.950 8.61CE-07 s €9€29E-D1 8.95CE+DO B+610E-07
9.000 7.999E-07 90 59¢€99E=-01 9.0C0E+00 7.999E-07 o
9.C50 7.43CE-07 90 S9€99E-01 9.050E+00 7.434E-07
%.100 6.963E-07 1.00000E¢00 34100E+00 6.903E-07
9.15¢0 6.413E-07 1.00C00E+00 9.150E¢00 6e 413E-07
9.200 5.9357€=37 1.60000E+09 9.200E+00 5.957E-07
9.250 5.535E-07 1.00000E+00 9.250E+400 5.535E~07
9.300 S+142E-07 1.00C00E+90 S.3C0E+00 Se 1t 2E-07
9.350 4.777E-07 1.L0C00E+00 9.350£+00 4o 777E-07
9.400 4e438E-07 1.00000E+0D 9.40CE+00 4o 438E~07
9.450 Ge124LE-07 1.00000E+00 9 .450E+00 4.124E-07
9.500 3e831E~-07 1.G0000E+00 9.50CE£4+00 3.831E-07
9.550 3.560E-07 1.00C0DE+0O0 94556E+08 3.560E~07
9.600 3.308E~07 1.00000£+00 S.60CE+QD 3.308E=-07
9650 3.073E-07 1.030000E¢00 94.65GE+Q0 3.073E-07
9.700 2.856E-07 1.00C00E+Q0 9.700E+00 2.856€E-07
9.750 2.653€-07 1.80C00E£+00 9.75CE4+00 2.653E-07
9.800 2.466E-07 1.00000E¢030 9,800E¢00 2+466E-07
9.850 24291E-07 1.00G000E+00 9.85CE+D30 2¢291E-07
9.900 20129E=07 1.C0000E+00 9.900E+00 20129E-07
9.950 1.978E~07 1.00000E¢00 9.950E+00 1.973E-07

10.000 1.838E-07 1.,00000E+00 1.000E+0L 1.838E-07
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Program LEVXNG
LEVXNG is a program which computes universal level crossing frequency
" curves for the non-gaussian turbulence model. The example presented here

shows the calculation of the u-gust curve for an R parameter value of 1.0.

Card Decks

The following car- decks were required to produce the sampel calcu-
Tation presented here: -

LEVXNG

CF2

INVR

FFT

Input Data

Program LEVXNG is written so as to require no input data from punched
cards. The functioning of the program is determined by DATA statements as

described by comment cards in the deck Tlisting.

Results

The above named card decks were compiied, loaded, and executed on
the University of Washington CDC-6400 computer system, Storage require-
ment including I/0 buffers and all system programs was 40,5005 words.
Execution, including compilation and loading, required 19;, seconds of

central processor time. The following output was generated.
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COVARIANCE MATRICIES OF FIRST AND SECOND
GAUSSIAN VECTORS ARE
7.071E~01 0.

De 3.536E-01
7.071E~-81 0.
Qe 3.5365"1

FUNCTIONAL RELATIONSHIR MATRICIES FOR FIRST
AND SECOND TRANSFORM VARIABLES ARE
1.000E+00 Q.
0. Qe
0. 1.000E+00
1.000E+00 Q0.

R PARANETER = 1.000
ODETERMINANTS OF COVARIANCE MATRICIES

DETA 2.50000E=01
DETB 2.50000E~-01

3.,0000000E-01 DX{(2)
52883333E-02 DF(2)

X INCREMENTS: 0OX(1)
F INCREMENTSS DOF (1)

3.0000000E-01
5¢2083333E-02



FIRST ROW, FIRST COLUMN, AND DIAGONAL OF

JOINT CHARACTERISTIC FUNCTION

1.C00€E+00

G4o782E-01

8.566E-02
7.172E-G3
2.752E-04
4.718E-06
3.E57E-08
1.168€~10
3.320E-13
1.168E~-11
3.557E-08
4.718E-06
24752E~-04
T.172€-03
8.566E~-02
4.,782E-01

1.008€+00
4.,562E-01
Be6W2E~-02
4.350E-02
1e3L4E~0L
1.508E~-06
1.222E~08
3.483E~11
8.731E-14
J.483E-11
1.222E-08
1.908E-06
1.344E-04
4.360E-03
6.6L2E~-02
4e562E=01

1.000E+080
24494E-01
S.89CE-03
8.010E-05
1.283E-07
3+563E~11
2.325E-15
2.558E-20
24096E-25
2.558E-20
24325E-45
3.963E~-11
1.283€E~-07
8.010E-05
9,890E~03
20 WO4E-D1

9.

L FY

0.
9.
Ge
9.

9« 485E-01
34348E-01
4e SUOE~-02
3.419E-03
1.L75E=~-04
1.502E-06
9.209E-0¢
2a454E-11
9.534E-13
5.277E~10
1.305€E-07
1.408E-05
6+700E-D4
1. 433E-02
1.415E-01
Be4SHE=01

Qe %82E-Q1
3.067E-814
3.€88E-02
1.S62E-023
¢ 332E-05
5¢819€=07
3.B4SE-8S
7.088E=12
2+E79E-13
1,€27€E~-180
4. ES59E~-08
SeSS1E~06
3.446E-04
9.242E-03
1.165E-01
6e333E-01

9.006E-01
1.291£=-014
3. L4BE-(Q3
1.267E-05
1.986E-028
4,055E-12
1.567E-16
1.133E~21
1.723E-24
5.199€-19
3.10€E-14
3.491€E~10
7.476E-07
3.105E-04
24569€E~02
4o3643E-01

g.
Ge
Qe
0.
'8
C.
8.
C.
C.
Ge
a.
Co
g
Q.
0
0.

Q.
O,
0.
Ce
0.
Q.
Ce
8e
Q.
0.
Ce
Ge
e,
Q.
g.
Q.

Q.
Ge
Ce
Qe
C.
Do
0.
0.
Q.
Ce
G.
G
Co
0.
Oe
8.
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8.154E-01
24229€-01
2.72TE~D2
1.552E~-03
34990E~05
4e543E-07
2+263E=-09
44896E~-12
4.896E-12
2.263E-069
4.543E-07
3.9%0E-05
1.552E-03
24727E=32
2.229E-01
8.154E=01

8.115€-01
1.942E-31
1.870E-02
B8.%20E~-QL
1.766E-05
1.689E-C7
7.226E=-10
1.368E-12
1.368£~12
7.226E-10
1.683€-07
1.766E-05
8.42CE~04L
1,870E=-02
1.942E~-01
Bo115E-01

6.727E-01
64049E-02
1.088E-03
3,232E-906
2.773E=09
34739E~13
9.,511€E~18
§.528E£-23
64,528E=-23
9,511E~-18
3.739E-13
2.773E~09
3.932E~ub
1.988€E-03
6.049E-02
6.727E-01

C.
0.
0.
- Qe
0.
0.
0.
Q.
0.
Oe
G.
D
B
0.
g.
C.

0.
G
0.
O
[ 2%
Ce
e
0.
8.
Q.
(L
Oe
8.
O
0.
0.

G.
0.
G.
S
Ge
Ge
Qe
O
g
0.
Oe
0o,
0.
Qe
0.
0.

6.456E-01
1.415€~-01
1.433£-02
6.700E-0h
1.408€-05
1.305£-07
S¢277E-10
94534E-13
2.45LE-11
9.209E~09
1.502E-06
1.075E-04
3.419E-03
4e349E~Q2
3.348E-01
9e485E-01L

64333E-01
1.165E~01
9¢ 242E=~03
JebHhb6E-Dh
5+951E~06
4+659E~08
1.627E-10
2¢579E~-13
7.080€E~12
J.049E-09
5+819E~-07
4+992E~-05
1.962E-03
3+608E~02
3.067E-01
9.482E-01

4e343E-01
2¢569E=-02
3.105E-0%
To476E~97
3e491E-10
3.106E-14
5¢199E-19
1723E-204
1.133E-21
1.567E-16
4.U55€-12
1.986E~08
1.867E~05
3.448E-03
1.291E-01
9.006E-01



FIRST ROW,

FIRST CCLUMN,
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JOINT PROBAAILITY DENSITY

2.010E~01 0,

7e043E~02-1.121E~14
6e565E~03-2,791E~15
62955E~0U=5,759E~1€
9.190E~05=14665E~16
1.324E-G5-3,463E-17
2.005E~06-14549E~17
3.209E=07=1,041E~47
9. S92E-08 0.

3,209E=07 1.041E~17
2.005E~06 1.549E=17
1324F~05 3,469E~17
9.19CE~05 1.665E~16
6+S555E-04 5.759E~16
64565E=03 2.791E~15
7.343E=-02 1.121E=14

2.010€~-01 0.
7.766E~-02-1.188E~14
7.106FE-03-3,124E~15
44097€-04-4,936E~16
24427E-05 0o
1.,595E-06 5.551E~17
1.138€=-07-1.578E~17
864601E~09 0.
1.326E-09 0.
84601E-09 C.
1.,138E~-07 1.578E~-17
1e595E-06=~5.551E-17
2+ 427E~35 0.
4.097E-04 4.,995E~1E
7196E-03 3.124E-15
7.766E~-02 1.188E~14

2.010E-0G1 O.

3.097E-02-24334E~-14
1.163€-03=-5,733E~1€¢
6e¢193E-05-9,759E~1€
JeTUTE=B6=2,4B3E=-16
2e4(BE-(Q7-4.987E-17
1.612E-08-7.,875E~18
1.227€E-09~7.660€E~-118
3.C5G6E~10 0.

1.227E-09 7.660E~18
1.612€-08 7.875E-18
2i408E-07 4.987E-17
3. 747€E=36 24488E-1€
6.193€E-05 9.759E~1¢€
1.163E=-03 S5.733E-1%
3.097E-02 2,301E~-14

1,876E-01 1.585€E-14
be124E-02-8,940E-14
3.E15E~03 4,223E~-14
4o142E-04~€.974E-14
5+.629E-05-2,205E-14
8.230E-06 heB884E-14
1.258E=06 1,657E~14
20102E=07 2.647E~14
1:106E=07~9,477E~15
5.016E-07 3.228%-14
3.202E=0E=4,956E~15
2413BE~05 €,330E~14
1.508E=04 8,972E-15
1.182E=-03 4.116E-16
1.219E=-02-5,151E~-14
1.098E~01~2,787E~14

1.880E-01 1.31CE~-14
4709 -02~8.896E~14
Je€23E=03 3I.880E-1l4
2.C0LE-04=7.192E-14
14217E~DC=2,108E~-14
84192E-07 S5.382E~-14
5.S37E-08 1.720E-14
44599E-0S 2.872E-14
1.€05E~0¢C=8,551E~15
1.€30E~08 2,294E-14
2419CE~07-4.252E-15
3a121E-0€ 24840E-14
4o B72E-05 1.0495-14
8.40LE~Q4=E,580E~15
1399E-02-4.908E-14
1e166E~01-32,267E~14

1.765E-01 Z.591E-14
1.335€-02-5.191E~-14
Sel4T1E=04=3.,705E-15
300HW7E~DC-C4785E~16
1.878E~0€-9,795E~17
1. 220E~07+-3.2665-17
B8427SE-~0C 2.700E-17
7+088E~10-3,888E-17
3+380E-1C 31.063E-17
2.256E~0S 3.290E-18
J.15EE~08-1.610E-17
Le763E~D7 So191E-17
7«S01E-DB6 2.129E-16
1.268E~04 5.384E~16
24533E~-(63 2.073E-15
Ge€25E~02~2,759E-14

AND DIAGONAL OF

1.530E-01 5.96B8E~-14
24272E~02~7+865E-15
2.044E=03 8,691E~15
2e490E~C 46 LULE-1k
3e462E~05-1.613E-13
5.127E~06 2.303E-14
7e924E~07 1.142E-14
1.448E-07-2.652E-14
1448E=-07 2.652E~14
7e924E=~07=14142E~14
5¢127E-06~2.303E-14
3.462E~05 1.613E-13
24430E=-04 64401E~-14
24CULE-D3-8.,691E~15
2.272E=02 7.865E~15
1.530E-01-5.968E-14

1.573E~01 6.195E-14
2.643E~02~9.276E~-15
1.725E-03 1.035E-14
9.849E-05-6.581E-14
BellthE-G6-1,660E-13
4. 227E-07 2.695E-14
3.106E~-08 1.,298E-14
24559E-69-2.726E-14
2e559£-09 2.726E-14
3.106E=-08-1.,298E~14
44227E=-07-2.695E-104
6e1l44E-06 1.660E-13
9.849c~-05 H6.581E-14
1e725E-03=-1.035E=14
2.€43E~02 9.276c~15
1.573E-01-64195E-14

1.206E~01 8.954E-14
5+4719€E-03-1,307E-14
2618€=04=1,515E~-15
1,508£-05-5,539E~-16
el E-07-4.08BE-17
6+198E-08 2.876E-17
$,2BLE~09 4L.009E-13
44537E~-1G6-1.575E-17
4e537E-10 14575E-17
4.284E-09-4,009E-18
64138E-G8-24876E~-17
elbtbbE-C7 4o03BE-17
1.538E-05 54539E-16
2+€18E-04 1.515E-15
Se718E-03 1.,307E-14
1.206E-01-8.954E~14

1.098E-01 2,737E-14
1,219E-02 S.151E~14%
14182E=03-4,116E-16
1.508E~04~8.,972E-45
2.4138E-05-8,330E~-14
3.202E-06 44956E=15
Ss016E=07~3,228E-1%
1.106E-07 9.477E-15
201C2E-07-2,647E-14%
1.,258E~06=1.657E~-14
84230E-06=4e BBLE-14
5.629E-05 2,205E~14
Lelt2E~04 64974E~1K
3¢615E-03-4,223E~14
4e124LE=02 B8.940E~14
1.376E-04-1,585E~14

1.166E-01 3.267E~-1k
1.399E-02 4.968E-16&
8s404E~04 6.580E-15
ke372E~-05-1,04L3E-14k
3¢121€E~06-8,84L0E-14
241%0E-07 4.252E-15
1.630E-08=3,294E~-14
1.605E-09 8,551E~45
4e593E-09-2,872E~-14
S¢937E~08~1.720E~-1%
8.192E-07-5.,382E-14&
1.217E-05 2.14B8E-1&
24004LE-04 7.192E~-16&
3.523E~-03-3,880E~-1%
44709E-02 8.896E~14
1.889E-01-1,310E~14&

6.625E-02 24.759E-14
2+533E-03-3,073E-15
1.268E~04~5,384LE=16
7+.5C1E-G6-2,129E-16
4e7€63E~07-9,191E-17
3.156E-08 1,6108E-17
2.256E=09=3.,290E~-18
3.380E-10-1.063E-17
7.088E-10 3.,888E~-17
8¢275E-69-2470CE-17
1,220E-07 3.,266E-17
1.878E-06 9.795E-17
3.047E-05 9,785E~16
Seu71E-04 3I,705E-15
1.335E-02 5.181E-14
1.765E-01-2.591E~1%&
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CONPUTED VALUES OF X AND NUX)

e _
3.0000000E-01
6.000C000E=-DY
3.0000000€E-01
1.2000000£+80
1.5000900E+00
1.B000000E+09
2.1000C00E+00
2.4000000E+00
2.700C009E+00
3.0000090E+89
3.3000008E¢02
3.6000060E+00
3.5306009E+00
4,200C000E+00
4.500C000E+00
4.8030000E+0J
5,1000000E+00
5.,400C000E+30
5.70000GIE+0D
6.0000000E+GO
6.300C000E+00
6.600P000E+CD
6.9000000E+00
7.2005000€+30
7.5000000E+00
7.200C000E400
8.1000000E+00
8.40G00C0E+00
8.7030000E+00
9.G0GG000EHNN
6.3000900€+00
9.6090C00E+CD
9.5000000E+00
1.0200000E+01

1.61836026-01
1.5262845E-01
1.2847151E~01
9, 7523343€-02
6.7960316E=~02
4o 451514 3E=-02
2.8145278E~02
1.7586277€-62
1.1020905€-02
6. 9694671E=(3
Lo 44H02E0E-23
2.8545952E-03
1.8407513F-¢3
1,1904340E~03
7.7143429E-0%
5,0066131€-C84
3.2530378E=-04
2.11557S8E-C04
1,3768525E=0h
8.9E629€6E=05
5.8415782E-05
3.808048SE-05
2.4833020E-85
1.62016C0E=-085
1.0576907€=-05
6. 9123730E-06
4,5273138E-06
2.97935S7€-106
1.9817650E=06
1, 34993C7E-06
9. 6704274E~C7
7.62361€8E~-07
e 9808920E-07
7.62361€68E-07
9. 6704274E~07
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LEVEL CROSSINGS
LEVEL CROSSING FREQUENCY OF THE NON-GAUSSIAN MODEL, R= 1,008

DIMENSIOMAL NON-DIMENSIONAL CROSSINGS PER CROSSINGS PER

LEVEL
X

0.

2.000E-01
4,900E-D1
6.000E-01
8.008E~01
1.830E+00
1.200E+00
1. 400E+00
1.60CE+00
1.800E+00
2+000E+00
2.210E+08
2.400E+00
2.600E+00
2.800€400
3.00CE+00
3.200E¢00
3.400E+00
3.630E+00
3.300E4+09
4.000E+00
4.20CE+08
LoGOOE+DD
L.600E+00
Le 800E+00
S.CJ0E+00
542005400
S.4NCE+Q0
5.60CE+LD
5.80CE+00
6,0CGE+00
6.200E+83
6+ 4005400
6.60CE+00
60 B800E+03
7.00CE#+00
7.200E+08
To4L0E+CO
7.600E+08
7.800E+00
8.000E+0O

LEVEL
X/SIGNA X

0.

24000E-012
4+000E-01
6+000E-01
8,C00E~01
1.000E+00
1.200€E+00
1.40CEe 00
1.600E+0D
1.800€+00
2.000E+00
24200E¢0Q
2¢400E+00
24€00E¢00
24800E%0C
3.,000E+00
3.203€E+Q0
3+400E+00
3.600E+00
3.800E+00
4. 000E+DO
4.200E¢90
Le4J0E+D0
4.EQ00E+DO
4L.800€+00
5.000E+00
5+20CE#Q0
S«400E+0Q
S.E00E+QD
Se LOQE+QO
6+000E0D
6.200E®00
6.400E+0C
6.E0CGE+Q0
€+80CE+QDD
7.L00€+00
74200E+0Q
T« 40CE+0QD
7.600£¢00
7.2005+¢00
8.000E+00

UNIT TIME

1.618E-01
1.576E-01
1.459E-01
1.285€-01
1.081E-01
8.721E-02
6.796€E-02
54153E~02
3.831E-02
20845E-02
2.057€E-02
1.503E-02
1.102E-02
8.111E~-03
5.995E-03
Lo4LEE-Q3
3.307E-33
20465E-03
1.8341E-03
1.376€-03
1.030E-03
Te714E~-Th
S4782E~04%
44336E~-04
3.2532-04
2e442E-04
1.833E-04
1.377E-04
1.034E-04
7.773E-05
Se842E~-D5
4.392E-05
3.302e-05
24483E-25
1.368E~-05
1.,405E-05
1.058E-05
7.964E-06
6.C01E-CE
4.527E~06
3.423E-06

ZERO CROSSING

1.000E+00
9.,741E-01
9.014E~-CL
7+938E-012
6.677E-01
5389E-01
44199E-01
3.184E-01
2.367E~01
1.739E-01
1.271E-01
9.290E-02
6+810€-02
5«012E=02
3.7G4E-02
2.747E-02
2.044E-02
1.523€E-02
1.137¢-02
B8.504E~-03
6.364E~03
4.767E-03
3.573€E-03
2+.679E-03
2.010€E-03
1.509E-03
1.133€E-03
8.5C08E-0%
6.392E-04
4,803E-04
3.61GE-04
2e714E-0k
2.040E-04
1.534E-04
1.154E-04
8.68LE-05
6.536E-05
be921E-05
3.708E=-05
2.797E-05
2.115€E-05
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Program INCPD
INCPD is a program which computes velocity increment probability
distributions of the non-gaussian turbulence model, The example given
here shows the calculation of the u~-gust increment distribution for a time
lag of 0.1 L,/U seconds. The correlation functions which were used in
determining the input data are given in equations 51 through 54 of the

report,

Card Decks

The following card decks were required to produce the sample calcu-
lation presented here:

INCPD

CF1

INVR

FFT

FFTRS

Input Data
The following nine data cards were used in producing this example.
The meaning and format of these crards are explained by comments in the

listing of program INCPD.

H 11 24 Fl b1 51 61 71

EXAMPLE USE OF INCPD TO COMPUTE U-GUST INCREMENT DIST., TAUS,1*L/U, R=l,, SU=1,
R

009516258

Le «95122¢42
295122942 | 1.0
1.0 9512242
095122942 | 1.0
» 5 0.

[] ~e9
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Results
The above named card decks were complied, loaded, and executed on
the University of Washington CDC-6400 computer system. Storage requiree
ment including I/0 buffers and all system programs was 20,4765 words.
Execution, including compilation and loading, required 5;, seconds of

central processor time. The following output was generated.

EXAMPLE USE OF INCPD TO COMPUTE U-~GUST INCREMENT DISTey TAUZ,1%L/U, R=1,9 SU=1,

COVARIANCE MATRIX OF 1ST GAUSSIAN VECTOR
1.00000 +95123
+95123 1.00000

COVARTANCE MATRIX OF 2ND GAUSSIAN YECTOR
1.00000 95123
»95123 1.00000

FUNCTIONAL RELATION MATRIX
«50000 0.00CG080
0.00030 -+50000

STANDARD DEVIATION OF PROCESS = 3,778E-0L
DETERMINANTS OF COVARIANCE MATRICIES

DETA 9.51626E-02
DETSB 9451626E~02

[}
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EXAMPLE USE OF INCPO TC COMPUTE U=GUST INCREMENT 0ISTey TAU=e1*L/U, R=4i,, SU=1,

NORMALIZED STDIZED OISTRIBUTION UNNORMALIZED NONSTOIZED
VARIABLE PROBABILITY FUNCTIOM VARIABLE PROBABILITY
X/SIGMA X DENSITY X DENSITY

.00 4.118E-01 5.00000E-01 Qe 2.B85SE+00
<050 44112€-01 5420579E~01 7.137E-33 2.8381E+00
«100 Le095E=01 €.41100E-01 1.427E-02 2.869E+00
150 44066E-01 Se €1506E-01 2.141€-02 2.84L9E+00
209 4.027E-01 Se81742E-01 2+855€E-02 2.821E+00
«2510 3.9765-01 €e01754E-01 J.5€9E-02 2.786Ee00
<300 3.916%-01 6021487E-01 4.282E-02 2.743E+0T0
«350 3.845E-31 6.40€93E-01 44996E-02 2.694E+00
«400 3.766E-01 6¢59924E~01 Se71GE-D2 2.638E+00
o450 3.678E-01 Ee78536E~-01 6ek235-02 2.576E4¢00
«508 3.5822-01 64 CHESTE-DOL 7.137€-02 24509E+0D
«550 3.479E-01 7.14341E-0L T.851c-02 2.437E400
+600 3.370E-01 7.31465E-01 8.565E-02 2.361E+00
«650 3.255£=~01 7.48030€E-01 9.278E-02 2.280E+00Q
o700 3.136E-01 7.64010€-01 9. 992E-02 2.197E+00
o750 3.013E-01 7.79335E-01 1.071E-01 2.111E+840
+«808 2.838E-01 7.S4139€-01 1.142E-01 2.023E+00
850 24760£-01 8.C08259E-01 1.213E-01 1.934E+00
«900 2.631z-01 2.21737E-01 1.285E-01 1.843E+00
« 9530 2.502€-01 8e34C69E~01 1.356E-01 1.753E+00

1.000 24373£-01 8.46755E-01 1.427E-01 1.662E+400

1.050 24245E=-01 8.€8293E-01 1.499E-01 1.572E+08

1.109 2.118E-01 8.69203E-01 1.576€E-01 1.484E¢00

1,150 1.994E-01 8479481E-01 1.642E-01 1.397E+00

1.200 1.872E-01 8.89144E-01 1.713E-01 1.311E+00

1.250 1.754E-01 8.S8207€E~01 1.784E-01 1.228E+080

1.300 1.639€-01 S.06€86E-01 1.856E~01 1.148E+00

1.350 1.528E-01 S.14€01E-01 1.927E~01 1.670E+00

1.490 1.421E=-91 9.21S72E~-01 1.998E-01 9.956E-01

1.450 1.319E-012 9,28820E-01 2eL7CE-CL 9. 240E=-01

1.500 1.221E=-01 9. 35169E~-01 2¢141E-01 8.557TE-01

1.550 1.129£-01 9o 41042€E-01 2.213E-01 7,907€-01

1.600 1.044E=-01 SeUH4E3E-OL 2.284E-01 7.290€E-D4

1.650 9.575E-02 9.E51457E-01 24355E-01 6.708E~01

1.700 8.793E-02 S.56046E-01 2.427E-01 6e160E-01

1,750 8.,058E-82 Ce.60257E-01 2+498E-01 5.645E=01

1.800 7.370E-02 9.EL112E-01 2.569E-01 S¢163E~-01

1.850 64729E=32 Qe ETEISE-DL 24041E-01 4e714E-01

1.900 6e132E-02 9.70848E-01 24712E-01 4,296E-01

1.950 5.578E-02 C.73774E-DL 2.78LE~01 3.908E-01

2.000 5.066E-02 S.76433E-01 20855E-01 345409E-01

2.050 44593E-02 9.78846E~-01 24926E-01 3.217E-01

20110 44157E-02 9.81032€~-01 2+998E-01 24912E-01

2.150 3.757E-92 9,283009E-01 3.0695-01 2.632E-01

2.200 3.391€-02 S, 84795E-01 3e140E-01 24375E-01

24250 3.056E-72 9. 86405E~01 3.212E-01 2elb1iE~-01

2.300 2.750E-02 9, 87855E-01 3.283E-01 1.927E-01

24350 24472E-02 C.£9160E-91 3e354E~-01 1.732E-01

2.400 2.219E=-32 9.50331E-01 Je26E-01 1.555€=-01

24450 1.990E-82 9.91383E-01 3e437E~-01 1.394€E~01

2.500 1.782E=-Q2 €.92225€-01 3+569E~01 1.249E-01
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EXAMPLE USE OF INCPO TO COMPUTE U=-GUST INCREMENT DIST., TAU=,1%L/U,

NOPHMALIZED
VARIAQLE
X/SIGMA X

5.000
5.050
5,120
5.150
5.200
5.250
5.300
5.350
5.400
5.450
5,500
5.550
5,600
5.650
5,706
5,750
5.800
54850
5.900
5,950
6.000
64050
6.100
60150
6.209
64250
6300
6.350
64430
6.“50
6.500
6.550
6.600
6.650
6700
64750
6.800
64850
6900
64950
7.000
7.050
74190
7.150
7.200
7.250
7.300
7.350
7.400
74450
7.500

STDIZED
FROBABILITY
DENSITY

4,341E=05
3.841E-05
2.398E£-05
3,0075-05
2.660E=05
2.353E-05
2.082E-05
1.8426-05
1.630F-06
1.442E=05
1.276E-05
1.129E-05
9,9856-06
BeB3LE=GE
7.8L6E=06
6+915E~06
6.118E=-06
S.413E-N6
4.789€~-06
4.237E-06
3.748E~06
3.316E-06
2.934E-06
2.596€-36
2.297€-06
2.032E-06
1.798E-16
1.596€-06
1.407E-06
1.245€=96
1.101E=06
9, 744E=37
BeB21E=07
7.627€-97
6.7485-07
5.97(%-97
S.282E-07
4,673E-07
44134507
2.6585-07
2,2266-07
2.863E~07
2.533E=07
2.241€E-07
1.983€~-07
1.754E~07
1.552€~07
1.373E-07
1.2156€-07
1.075E-27
3.509E~-08

DISTRIBUTION

FUNCTION

9,59¢82E-01
9eS9C84E-0L
Co 99C86E~U1
Ce€CCHBE-D1
9,S9S89E-01
9.S9€99E~01
S, 99C91E~01
€4 €9€22E-~01
9,S9<93E-01
96 S9CSUE~OL
24$9€95E-01
9459€95€~01
9499¢965-01
9. 99S96E-01L
Ce€SC97E-DL
9.€9S97E-01
CeC€GCQ8E-01L
3.S9C38E-01
9.€99398€-01
Ce €39€98£-01
94€9C€9BE~-01
9e$9S99E-01
94€S€89E~01
94€9€99E-01
Ce§9€S9E-0L
94S9C99E~-01
Ce€9€C9E-01
2499¢€399e~01
9499CS3E-01
9.69599e-01
1.00000E+400
1.G600C0E+00
1.(0CG0E+03
1.00000E+00
1.00C00E¢00
1.C0C00E+D0
1.00G00E+00
1.C0000E+00
1.C0000E+00Q
1.00000E+00
1.00000E+00
1.00€00E¢00
1.00CC0E+D0
1.C0CCUE+QD
1.C0000E+0Q
1.CDQ00E+D0
1.C0CCO0E¢OD
1.60000E+00
1.00C0GE+DO
1.00C00E+00
1.C0030E+00

UNNORMALIZED
VARIABLE
X

7e137E=01
7.209E-01
7.280E-01
7.351E-01
7423E-01
7Te494E-01
7.565E-01
7e637E~01
7.708E-01
7.780c-012
7.851€-01
7.922E-01
7e994E-01
8.065€-01
8.136E-01
8,208£~-01
8.279E-01
8,351€-01
B.422E~-01
8.493E-01
B.565£-01
8+.636E=01
8.707€-01
84779E~01
8.85CE-U1
8.921E-01
8.993E-01
3.064E-01
9.136E-01
3.207E-01
9.278E-01
9.350E-01
9.,421E-01
9.492E-01
9.564E-01
S.635E-U1
9.707E-01
S.778E-01
94849E~-01
3.921E-01
9.992E-01
1.006E+00
1.L13E+00
1.021Z+00
1.028E+00
1.035E+086
1.042E+00
1.L49E+00
1.L56E+00
1.063E+00
le0U74E+0D

NONSTOIZED
PROBASILITY
DENSITY

J041E-C4
2.691E-04
20381E-04
241C6E-04
1.863E-04
1.649E~06
1.459E-04
1.290€E-04
1.142E-04
1.610E-04
8.,937E-05
7.907E-05
64995E~05
6.189E~05
Se475E-05
LoB8L4LE-DS
4.286E-05
34792E-05
3.355E=05
2+968E-05
2.626E-05
24323€E-05
2.055E-05
1.818E-05
1.609E-05
1.,423E-05
1.259E-05
1.114E-05
9,857£-06
84721E-06
7.716E-0E
6e826E-06
64039E~-06
Se343E~06
4L,727€E-06
Le182E-C6
3,703E-06
3.274E-C6
2.896E-86
24563E~QE
242567E-06
2.006E-06
1.775E-06
1.570E=0QE
1.389€-06
1,229E-06
1.087F~-06
9.619%E-07
Be511E-07
7.530E-07
64662E-07

R=1.y SU=1.
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EXAHPLE USE OF INCPB TO COHPUTE U-GUST INCREHENT DISTo’ TAU-.i'LIU' R=1ey SJ=1-

NORNALIZED STNIZED DISTRIBUTION UNNORMALIZED NONSTOIZEOD
VARTIABLE PROBABILITY FUNCTION VARIABLE PROBABILITY
X/SIGMA X DENSITY X DENSITY

2.500 1.782E-02 e €2325E-01 3e569E-01 1.249E-01
24558 1.595€=02 9.53168E-01 Je64CE-01 1.117€-01
2.600 1.425E-02 Se€3¢22E-01 3.711E-01 9.986E-02
2.650 1,273E-82 9.S4596E-01 3.783E-012 8.918€=02
2,700 1.136E-02 9,€5198E-01 J.854E-01 7.958E-02
2750 1.013E~-02 2, S5735E-01 3.925E-01 7+095E-02
2.8040 9.023E-C3 9,€6213E-01 3,997E-01 6.321E-02
2.850 2,033E-03 S,S6E3I9E~01 4.06BE-01 5¢628€E-02
24900 7.147E-03 9.57018€~-01 Le140E-0L S.007E~02
2+950 64355€-03 96 S7355E~-01 44211E-01 44452E-02
3.000 Se648E-03 9, S7€E5E-01 44282E-01 3.957E=-02
3.€59 5.017£-03 CeC7¢€21E~-01 Loe35LE-01 3.515E~02
3.100 4e455E-D3 9,$8158E=-01 4.425E-01 3.121E-02
3.150 3495LE-02 9.S8368E-01 4.496E-01 24770E-02
3.200 3.507E=-03 . CSBESLE-D1 4.568E-01 24457E-02
3.258 3.111E-03 9.€8719E~-01 Le639E~-01 2¢179E-02
3.360 24758E=03 SeS8866E-01 Le711E-01 1.932£-02
3.350 2.445E-03 ©.S8S96E-01 4.782E-01 1.713€=-02
3.400 2+166£E-03 9.%9111E-01 4.853E-01 1.518E-02
3.458 1.,919€-03 C.,€9213E-01 4.925E-01 1e345E-02
3.50¢ 1.708CE-03 9,59303E-01 4,936E~01 1«191E=02
3,550 1.5065-03 Q.59383E-01 S5.C67E-01 1.055€-02
3.600 1.333€-03 9, S9US4E-01 5.139E-01 9¢341E-03
3.658 1.181E-933 9.99517E-01 Se.210E-01 84270LE~03
3.700 1.045E-93 9.S9572E-01 5.282E-01 74322E=-03
3.750 9.,251E-04 9.59€22E-01 5.353E-01 6.481€-03
3.200 84139E~04L Go S9EB5E~01 Sek24E-01 5.737E-03
3.850 7.248E-D4 9,$9704E-01 5.496E-01 5.077E-03
3.900 6e41LE-QL 9,€9738E£~-01 SeS567E-01 4 4494LE=03
3.9590 5.6775~04 9.,S9768E-01 5.638E~01 3.977E-03
4,000 S.023E~-04 9.,59795E-01 5710E-01 3+519E-03
4.050 Lo U45S5E-0L 9. €9618E-01 5.781E-01 3.114E-03
4.100 3.933E=-00 9. <9839E-D01 54852E~01 24756E-03
4150 3.4B0E=-04 GeS9858E~-01 5.924E-012 2.438E-03
4,209 3.080E=-04 9,59874E-01 5.995£-01 2.157E-03
44250 2.725E-04 Qe €2E89E-D1 6.067c-01 1.909E-03
4,3C0 2.411€-04 9,99%02E-01 65¢138E-01 1.689E-03
44350 2,133E-04 84€9S13E-01 6+209E~01L 1.,494€E~-03
4.400 1.887E~34 9,9¢23E-01 64281E-01 1.322E-03
4.450 1.670E-04 3. 99¢32E~01 6e4352E-01 1,170E-03
4.50C0 1. 477E=-04 Ce €9CLOE-QL 6.423E-01 1.0356-03
44550 1.307€-04 0,99C47E-01L 6.435E-01 9.157E~-04
4,600 1.156E-04 9. €9¢53€E-01 6.566E~01 8.102E-04
44650 1.023€-04 9,59958E~-01 64638E-01 7+.168E~04
44700 9.0352E~05 8499S63E~-C1 6.709€E-01 64342E-04
4,750 8.009E-05 S+S9C67E-01L be7€0E-01 Seb11E-04
4,800 7.086E-05 9.99¢71E-01 6.852E-01 Lo I6LE~-Dk
4.850 54 269E=05 G4 €9C74E-DL 60923E-01 4,392E~04
4.9G0 S5+S5LEE-TS G.99¢S77E-01 6e994E-01 3.886E=-04
4.959 4.907E-85 S, S9C80E~01 7.666E-01 34438E-04

5.000 44341E-05 G.99582E~01 74137E-01 3.041E-0%
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EXAMPLE USE OF INCPD TO COMPUTE U=-GUST INCREMENT DIST.y TAU=.1%L/Uy R=1.y SU=1,

NORMALIZED STOIZ2€ED DISTRIBUTION UNNORMALIZED NONSTOIZED
VARIABLE PROBABILITY FUNCTION VARIABLE PROBABILITY -
X/SIGMA X DENSITY X DENSITY

7.500 9.5C9£-08 1.00C00E+00 1.,071€+00 6.662E-07
7.550 8e413FE=98 1.CDCOOE+0OC 1.0785+0¢ 5¢894E~07
7.600 7.443€E-08 1.00000E+00 1.085E+0¢8 Se214E-Q7
7.650 64585E:=08 1.00000E+00 1.092E+00 44613E-07
7.700 5+826E~-08 1.C00300E+00 © 14099E+00 4e081E-07
7.750 - 54154E=038 1.00C03£+00 1.,106E+00 34611E-07
7.800 = 4.560:5-08 1.00000E+00 1.113E+00 341 95E~07
7.850 4.C35E-0B 1.G0000E+G0 1.121E+00 24826E-~07
7.900 3.570£-08 1.CNC0JE+00 1.128£+00 2.501E-~07
7.950 3.158E-08 1.00000E+00D 1.135E+00 24212E-07
8.C00 2.794E~08 1.30000E+00 1.142E+08 1.957E~07
5.£50 2.472E-08 1.C0C0NE*ODC 1.149E+00 1.732E~07
8.100 2.187E-08 1,00C00E+00 1.156E+00 1.532E-07
8.150 1.935E-08 1.G0CR0E+0Q0 1.163E+00 1.356E~07
8.200 1.712c~-88 1.00C00£+00 1.170E+00 1.199E~07
8.258 1.515E-08 1.G0GN0E+DD 1.178E+00 1.061E~07
8+300 1.340E-08 1.C0000E+00D 1.185€+00 3.387E~08
8.350 1.185E-93 1.,C0030£+00 1,192E+00 8.3056-08
3.400 1.049E-08 1.C0000E+00 1.199E+00 7.348E-08
8450 9.279E-39 1.C0C00E+00 1.206£¢00 6.501E~08
8.500 8,21 0£-09 1.00CGIE+DO 1.213E+00 54751E~C 8
8.550 7.263£-09 1.000C0E+00 1.220E+400 S.088E~08
8.600 he426E-09 1.00C90E«0Q0 1.2285+00 Le.5D2E~08
8.650 5.6855-09 1.,30000E+00 1.235£+00 3.983E~08
8.700 5.G3C£-09 1.00G00E+00 1.242E+00 3e524€E~08
8.750 4e45CE-09 1.00C00E+00 1.249E+00 3.118E-08
8.800 3+927E-09 1.00007€+00 1.256E+00 24758E~08
8.850 3.433F=09 1.00CC0E+00 1.263E+00 2e440E~08
8.900 3.082E~-09 1.00C00E+GO 1.27CE+030 24159E-~08
8.950C 24727E-09 1.003C00E+D0O 1.278€+00 1.910E~08
9.000 2.412%-09 1.00(COE+QO 1.,285E+00 1.693E~08
3.(50 2.134E=-03 1.00CC0E+00 1.292E+00 1.495E~08
9.100 1.888E-09 1.G0C00E+00 1.239c+4GG 1.323E~08
9,150 1.671E-29 1.CGCCOE+ODD 1.3C6E+0Q0 1.170E-08
3.200 1.478€E-09 1.00C00E+80 1.313€+080 1.035E~08
9.250 1.3C8E-C9 1.30C0JE+OD 1.320E+00 9.160E~09
9.300 1.157E-09 1.60503E+00 1.328E+00 8.104E~09
9350 1.023E-99 1,C0CCOE+0QO 1.335E+00 7.170£-09
9.400 9.055%E-10 1.00000E+00 1.342E400 6e343E~09
9.450 B.011E-10 1.00600E+00 1.349E+08 5.612€~09
9.500 7.0B88E-10 1.00000E+DD 1.356E+00 4,966E-09
94559 60 270E~10 1.50C005¢00 1.363E+00 %,393€E~09
S.600 5¢5LEE~-10 1.C0G00E+DD 1.37CE+00 3.887E-09
3.650 4e93 8E-1D 1.€0000E+00 1.377E+04G 3.438E~09
9.700 he343E-10 1.00000E+00 1.385E+00 3.042E~0€¢
94750 3. 841E-10 1.00C08E+0D 1.392E+00 2+691E-C9
9,800 3.398€E~-10 1.C0C00E+QD 1.399E+00 2.381E~09
9.850 3.007E-10 1.000B0£+00 1.406E+0] 24107E~09
9,900 2.660E-10 1.C0C00E+0D 1.413E+00 1.864E-D9
9.950 2+353E-10 1.00000E+00 1.420E+00 1.648E~09

17.000 2.083E-10 1.006000=+00 1.427E¢8% 1.459E~-09
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Program EIGU
EIGU is a program which computes eigenvalues and eigenfunctions of
linear system responses- to the longitudinal component of the non-gaussidn
turbulence model, The example presented here shows the calculation of

the first eigensolution for a system having the transfer function

H(s) = 3_1(+11:+ﬂ ¥ s-](-li-i) | (_A]).

The parameters of the problem are:

o, = .3048 (m/sec)
L, = 200. (m) (A2)
U = 100. (m/sec)

Card Decks

The following card decks were required to produce the sample calcu-
Tation presented here:

EIGU

attached subroutines.

(A11 of the decks required by program EIGU have been given the identifica-
tion tag EIGU and will be found listed consecutively with program EIGU

at the end of this appendix.)

Input Data

The following five data cards were used to produce the example
presented here, The meaning and format of these cards is described by

comments in program EIGU.



175

11 21 1 1 1 1 1
1.000G0000G0E ¢0D 1.0000000000E+0 ~1.0000/000000E+D -1.0000000000E+@8
. 3048 100. 200,
‘Results

The above named card decks were compiled, loaded, and executed on
the University of Washington CDC-6400 computer system, Storage require-
ﬁent inc]udinng/O bdffers and all system programs was 17,664, words.
Execution, including dompilation and 1oad1ng,'§equired 11,, seconds of

central processor time., The following printer output was generated.

BEGIN ITERATION FOR EIGENVALUE AND EIGENFUNCTICN NGO, 1

TURBULENCE PARAMETERSS

STD. DEV. = L3065 ®TAS = 108.000 SCALE LENGTH = 200,000
VEHICLE PARAMETERS:?
COEFFICIENTS POLES

1.0000E+00 1.0000E+00 1.0000E+0Q0 1.0000E+00
SYSTEM RESPONSE VARIANCE = 3.,144411€-04

ITERATION NO. 1. ESTIMATED EIGENVALUE IS 1.1279131€E-01i, (DEVP = 1,000E+00
ITERATION NOe. 2. ESTIMATED EIGENVALUE IS 2.,3169420E~01, (DEVP = 1,054E+00
ITERATION NOe 3. ESTIMATED EIGENVALUE IS 5.5995409E-01, (DEVP = 1.417E+00
ITERATION NO, &4, ESTIMATED EIGENVALUE IS 5.6586583E=-01, (DEVP = 1,056E-02
ITERATION NO. 5. ESTIMATED EIGENVALUE IS 5.6579235E=01. (DEVP = 1,299E-04
ITERATION NO., 6. ESTIMATED EIGENVALUE IS 5.6578378E-01, (DEVP = §,513E-05
ITERATION NO., 6., ESTIMATED EIGENVALUE IS 9.,9806141E-01. (DEVP = 7,640E~-01
ITERATION NOeo 7. ESTIMATED EIGENVALUE IS 5.5913282E-01, (DEVP = 4,398E-(01
ITERATION NO. 8. ESTIMATED EIGENVALUE IS 5.5924255E-01, (DEVP = 2,499E-04&
ITERATION NOs 9 ESTIMATED EIGENVALUE IS 5.5924316E~01, (DEVP = 1,078E~06
EI = 8.,866E+50)

EI = 1.,720€E-02)

EI = 1.,183E-02)

€I = 3.,261E~-04)

El = 2,309E-05)

EI = 1.754E~056)

EI = 1.758E-06)

El = 2,277E-02)

EI = 2,842E-05)

EI = 1.799E~-06)



EIGENVALUE NO.

1 IS 54592431¢E
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~0L

FRACTION OF RESPONSE VARIANCE QUE TO THIS EIGENVALUE IS 499463
FRACTION OF RESPONSE VARIANCE DUE TO FIRST 1 EIGENVALUES IS +99463

X
o.00eC0
«0100
« 0200
«0300
«0450
o688
+1588
3925
«7532
1.2436
1.8600
246071
3.4827
L.4830
56153
68713
8.2603
S.7720
11,4176
13.1918
15,0874
17.1183
19,2695
21.5571
2249732
26.5083
29.1811
31.9719
34.9013
379594
41.1340
LLhe4L87
4L7.87¢1
51.4505
5541365
58,9646
62.9212
66.5911
71.20 L4
75.5300
80.0000

EIGENFUNCTICN

0.

7.0285872829£-03
1.4055442114E-02
2.1078851805E~02
3¢1603814298E-02
4.8223346<059€-02
1.1050040718E~G1
2.,60€64371720E-01
44382616S502€=C1
5.57723571582E~01
5.606385467152-01
4.7T4E7481916E-C1
3.67764023814E-01
24783993S679E-C1
2.0852833382€-01
1.52€€66€688E-01
1.0799291389E~-01
7.4001431704E-02
4.9C02875u620€E-02
3¢1470795013E-02
1,959312¢325E-02
1.1792418679E=-02
6.8870C11724E-03
3.887450C871€E=03
2.1248914355E~-(3
1.127442C928E~C3
5.77960934088E-04
28766772923E~04
1.383017€211E-04
544 3879633LBE~05
2,9115511114E-05
1.2712580521E-C5
5439248Q7584E~-06
2420815841 50E~-06
8.78E53815L4E~07
3.3743847791E=-17
1.,2548984137€E-(07
be53E549L615E€-08
1.5822400221E~08
5¢3656784205E~-09
1.7551071753€-09

FIRST 1 EIGENVALUES AREt
1 54592431€E~01

REMAINING EIGENVALUES SQUAREC SUM TO 1.68815126-03
THE ABOVE EIGENVALUES ACCOUNT FOR
LARGEST POSSIABLE REMAINING EIGENVALUE IS 4,1037118€E-02

99463 OF THE RESPONSE YAR.

[T
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Program EIGVW
EIGVW is a program which computes eigenvalues and adjoint eigenfunc-
tions of Tinear system responses to the vertical or lateral components of
the non-gaussian turbulence model. The example presented here shows the
calculation of the first eigensolution for a system having the transfer

function

1+2 1-2

#(s) = s=-(1+7) Ts- (1-2) (A3)

The parameters of the problem are

o, = .3048 (m/sec)
L = 200. (m) (A4)
U = 100. (m/sec)

Card Decks

The following card decks were required to produce the sample calcu-
lation presented here:

EIGVW

attached subroutines.
(A11 of the decks required by program EIGVW have been given the identifi-
cation tag EIGVW and will be found 1isted consecutively with program

EIGVW at the end of this appendix.)

Input Data

The following five data cards were used to produce the example

presented here. The meaning and format of these cards is described by



- - - ——— R.. €L dl.. BacKdaround inrormation and user u
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comments in program EIGVW.
1 11 21 1 1 1 61 1
F
1
1.0000000000€E+00 1,0006[000000E+80] -1.0000/000000E+30] ~1.0000000000E+00
L3048 100. 200
1
Results

The above named card decks were compiled, loaded, and executed on
the University of Washington CDC-6400 computer system. Storage require-
ment including I/0 buffers and all system programs was 23,165 words,
Execution, including compilation and loading, required 18;, seconds of

central processor time. The following printer output was generated.

BEGIN ITERATION FOR EIGENVALUE ANO EIGENFUNCTION NG, 1

TURBULENCE PARAMETERS?

STD. DEV. = .305 NTAS = 108.048¢ SCALE LENGTH = 200,000
VEHICLE PARAMETERS?
COSFFICIENTS POLES

1.0060E+00 1.0000€+00 1.3000E+0C 1.6000€+00
SYSTEM RESPONSE VARIANCE = 2.847561E~-01

ITERATION NOe 1. ESTIMATED P EIGENVALUE IS 4.,1279131E-01i, (DEVP = 1,00CE+00
ITERATION NO. 2. ESTIMATED Q EIGENVALUE IS 2.2656324E-01, (DEVQ = 14GOCE+QOD
ITERATION NOe. 3. ESTIMATED P EIGENVALUE IS 5.26€61024E-014 (DZVP = 3,669E+00
ITERATION NO. 4o ESTIMATED Q EIGENVALUE IS S5.4074826E-B1. (DEVQ = 1,387E+00
ITERATION NOe So ESTIMATED P EIGENVALUE IS 5.3623562E-01. (DEVF = 1,828E-(2
ITERATION NOe 6e ESTIMATED Q EIGENVALUE IS 5.4059088E~-01, (DEVG = 2.9410E~0&
ITERATION NO. 7. ESTIMATED P EIGENVALUE IS 5.3619030E-61e (DEVP = 84452E-05
ITERATION NOs 8. ESTIMATED Q EIGENVALUE IS S5.4058727E~D1, (DEVG = 6.682E~06
ITERATION NO. 8. ESTIMATED Q EIGENVALUE IS 9.9717091E~01, (DEYQ = 8.44EE-01
ITERATION NOs 9. ESTIMATED P EIGENVALUE IS 5.2998707E-01. (DEVP = 1,157E-02
ITERATION NO. 10, ESTIMATED 0 EIGENVALUE IS 5.3070587E-01, (DEVO = 4,678E~-01
ITERATION NOe 11. ESTIMATED P EIGENVALUE IS 65.3037573E~-01, {DEVP = 7,333E-0&4
ITERATION NO. 12, ESTIMATED Q EIGENVALUE IS S5.3070999E-01s (DEVQ = 64053E~06
ITERATION NO. 13, ESTIMATED P EIGENVALUE IS 5.3037603E~031. (DEVP = 5,765E-07
EI = 8.866E+50)

£l = 2,282E~-02)

EI = 1,836E-02)

EI = 1,243E-02)
El = 6.531E-04)

EI = 6.816E~05)

EI = 7.757c-06)

EI = 7.889E-07)

El = 7,912E-07)

EI = 7.785E-04)

EI = 2.695E-02)

EI = 84203E-05)

EI = 7.583E-06)

EX 8. 100E~07)
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EIGENVALUE NO, 1 IS 5,305425€E-01
EVF = 5,3037603E-01 EVQ = 5,3070909E~01 RELATIVE OIFFERENCE = 6.278E-04

FRACTION OF RESPONSE VARIANCE CUE TO THIS EIGENVALUE IS 988438
FRACTION OF RESPONSE VARIANCE OUE TO FIRST 1 EIGENVALUES IS .98848

X FUNCTICN OF 1ST ARG FUNCTION OF 2ND ARG
0.0000 Oe 8.
«0100 6¢7324511024E-03 1.0461591109E-02
« 0200 1.3482343875E-02 2.0G894505585E-02
« 1300 2.0247587913E=-02 341296288211E~02
e 0450 3.0419692969E-02 4.683531G860E-02
+0688 4.6571975135E~02 741268468976E-02
«1588 1.0784141104E-01 1.6144901928E-01
«3925 245942980425E~01 3.6958022178E~01
«7532 Le414615S714E=-01 5+9018308049E-01
1.2436 5+58EEEL48T1E~0L 68767124 324€-01
1.8600 5452383061C3E-01 5¢9429268019E-01
26071 4.6575693583E~01 3.7291355406E-01
3.4827 3.683597€265E~31 1.5671227976E-01
4.4830 24854493€694E-01 4.9083324351E-03
56153 24151672%2905~01 ~8.6185086779€E~02
6.8743 1.570214489%1€E-C1 -1.3371281284€E-01
8.,260C3 1.1086763418E=01 =1.5016589158E-01
Se7720 7.,598106E5344E~-02 ~1.4449874243E-01
11.4176 5.03587529€8E=(G2 =1.2579504215€-01
12,1918 3.2317565084E-02 ~1.0150526678E~-01
15.0874 240120179993&~02 =7.7014503724E~02
17.1183 1.2109644039E=02 ~5.5262€94482E-02
18,2695 7.07231859R7E-03 ~3.7788138842E~02
21.5571 3.992025€440E-03 ~2¢4638804756E-02
23.5732 2.1828527423E-03 =1.5377986136E~02
2€45683 141577712014£-03 ~9,2228821484E-03
28,1811 5.9350855992E~04 -543027323990E~03
31.9719 249540622495E-04 ~2493830489023E~23
34,9013 1.4202215191E~04 -1.5632781479E-03
37.9594 6.6120351833€~05 ~8.0106806874E-04
41.1340 2.98¢8742026E-85 -3.9662702230E-34
Ly 4487 1.305455%279E=(05 ~1.8885713453E~04
47.87¢1 55375428735E-86 -846993337604E-05
51.4505 242675596710E-06 =3.8557179289E~05
E5.12€5 9.022954C17CFE~-07 ~1.6547€12754E~05
58+964b6 3.4651553914E~-07 -648355563309E-06
62.G5212 1.288656200639E-47 -2+72682590(85E~06
66,9211 4.65858673985-08 -1.0544685683E-06
71,2044 1.624303¢5647E~08 ~3.9257897507E-07
75,5200 5518019E309E-09 =1.4176732168E-07
80.0C00 1.8023209848E~L9 -449291119477€-038

FIRST 4 EIGENVALUES ARER

1 530

5425¢E-01

REHAINING EIGENVALUES SQUARED SUM TO 3.2806552E-03

THE ABOVE EIGENVALUES ACCOUNT FOR
LARGEST POSSIBLE REMAINING EIGENVALUE IS S5.72770G4E-02

+38848 OF THE RESPONSE YAR.
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Program RLEVX

RLEVX is a program which computes the level crossing freqiuency of a
Jinear system response to the non-gaussian turbulence model. “The example
presented here, in order to be as simple and compact as possi51e, utilizes
the first and second eigensolutions of the response and its first deriva-
tive which were presented in the numerical example sectiqn of this report.
These solutions were assumed to represent the total non-gaussian pbrtion

of the vehicle response.

Card Decks

The following card decks were required to produce the sample calcu-
lation presented here:

RLEVX

CF2

COEF

FFT

INRPDT

INVR

SCALE

Input Data
The 175 data cards listed on the next three pages of this appendix

were used to produce the example presented here. The meaning and format

of these cards is described by comments in program RLEVX.

Results
- The above named card decks were compiled, Toaded, and executed on

the University of Washington CDC 6400 computer system, Storage require-
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_meht including I/0 buffers and all system programs was 44,550s words.

Execution, including compilation and loading, required 53,, seconds of

‘central processor time, Printer output generated by the program:is

presehted following the listing of input data on the next few pages.
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2

EXAMPLE OF

1y 1

0.
1.00C/00CCOG00000E-02
2.,000/000C0C000CRE=-02
3.000/0000030C000E~-02
4,69%999S969S999E~02
€.8142R683C4S825E=02
1.653285815C5484LE-01
3,725/2089543€345E-01
7.10029610127151E~01
1.1681015056€0SHE+DO
1.74342587764184E+GO
2. 44026468882656E+00
3,25E7C74T7C570L4kELC
4.18S08044492492E+00
5.24429005132021E+00
Eeul4'54877398570E+00
7.70852519€6G3235E400
2.11€669E7597887E+00
1.06494L129136769E+01
1.2301760230CS3415401
1.,40€69532042637E+01
1.59580673371723E+01
1.796114E0€77929E+01
2.00S1027016352BE+01
2.23405120444729E401
2447CLER3I2E84TH0EYGL
2.71E8B91112246ME+DL
2.G7B59040235412E3G1
3.2513922752CS63)E+01
3053605L54C1CHWIE+D L
3.8315606966622PE+01
4,140099€65212542E401
4.45939437532236E+01
4,7918100123507WE+01L
5.13q5933112767p5+01
S 491185€2S387023E+D1
5,85C42835€41965E+01
6.23822650468401E¢01
€e632355C127S859E+51
70032932€3€7S197E+01
Tolkl897872€47162E401

EIGENVALUE&AND CONJUGATE EZIGENFUNCTIONS FO. 2 1.

0 . |

1.0000C0C0C00%0RE~02
2.00000000C0£3CDE=02
3.0000°0060C00CC00E=-C2
%449999999999999E~02
6.8142868394S325E~-02
1.53285815554841E-01
3.725908S5436845€6-01
7.1QC29610127151E~01
1.1684015056€051E+00
1470342597764 184E+0D
2.440264E8282656E400
2. 25€70747357I4MESDL
4,18S0804449349RE+00

FROGRAM RLEVX USING| & EIGENSOLUTIONS FR

182

1 1 51

[}

L]
1.03380453L841644E-04
+12091576661881E=-04]
19,23896341785153E~-04
2.06720167[699628E=03
«69721641553622E-03
2.28626732993262E~02
117667551247y 99E~C1
3.15235689867819E-01

OM NUMERICAL EXAMPLE

67526255

+19197439
ke 264516551
[3+27771101
2.4907999¢C
1. 86462553
1231750567
8.35926886

F.OSBQ?SJ”OJZ?G?E-Oi
5

624035E-01
608305€=-0 1
805992E~01
722861E-01
595487E-01
52283%E-01
181850E-01
DS0G7QE-G2

+60219729957691E~02
5+ 487025024952 94E-C
7.66173407183739E~0 3]
5.635937ue?as316£-03
[pe82869982342144E-03
Foo 46049667514 021E-03
R+550256627322956-03
1.29766408007102E-03
-[5. 966965127 45958E~04
2.33464304622154E=04
7.46026255770607E-05
1.27131811524769E-05
5¢83078018676558E~-16
8.23567267226282E~G6
609255924 741253E~06
3.6055246337956€E~06
1.85513385142841E-06
8457487222683428E-07
3,61763259176369E=-07
1.38814280111638E-07
bheB87069325402085E~G8
1.58616695717321E-08

F.h1659736179h965-02

0.

8.69519530805193E~06)
3,39523493750350E~05
+ 4541653730098 7E-05
1.61536342/90631 8E~04
3.48931473193238E~04
1.39148673268830E-03
3.93038362627093E-03
3.83589175539736E-03
6e78339134014542E-03
241449527 8386953E=02
13.83616057015668E-02
-3.91568643P81112E-02
~f.63839777097708E-03

61 i

EIGENVALUE] AND CONJUGATE EIGENFUNCTIONS NO.o 1 3.17000000000€E+00

o.
=1.729917 14 84716BE=0t
~6.B7407578743960E=0%
~1,5363117753273FE~03
~3.4213645565766H6E~C3
“7e716L3572821392E-03
-3.66087563417696E=02
~1.77411931788456E=01
-4.4132063973206692E=-01
~E.52671271597395E-01
-6.494946562899258E~01
-4.85131711607991E~C1
~2.637628({3987694E~01
-5,85279%76770651E=C2

Be41333427€99911E~-02

1.5283307568397/0E-01

1.6642798250831|3E~01
1.51907809431097E~C1

1029219411 572128E-01

1.06441974€E04521E-01

8.L479562(987124c-02

631065303437 834E-02

4,38186274857833E-02

2.81514569994369E~-02
1,68717553016897E=-02
3.55632283823490E-03
5.15262972619396E-03
2.68500152470235E-03
1.357552099856%3E-03
6+713300374149F2E~0l
3.259527C01914111E-Ch
1.5396351365793[3E~0%
7.05683858937510€-05
3.08558623572342E=05
1.27738820239340E-05

k.8895026139*95rE-06

1.692912013928.1E-€6
5,08365093577532E-07
1.15665320127 314E-07
8.57255448554467E=09
-1.10905148192891E-08

060000000G0E+30

De
~2.52815052295637E-05
=1.,00459167608067RE=C%
=2.245207 18 C7172LE-CL
-5.3001683580736/7E-04
-1.12808927923015E-03
~50355211212838C{0E-03
=2.618905468037597c~C2
~6.734529938069185~G2
~1.,06560156451943E~CL
~1.475817737067561E-C1
=1.012214232024L0PRE~01
~6.20101667081083E-(2

9.82956566 809651E-06

OF REPORT
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LIGENVALUE

9.116669675978aTE+00
1.06406129136760E+01
1.2301760220C34E+01
1.4066953204z63[E+01
1.5958067337172BE+01
1.79611460677920E+01
z.un=1oz7u1e’szEEru1

5.244R2900C5132021E+00
€.L145487739E570EHDD
7o 708r2519503235E000

2,235051204644L4720E401
2. 47CDE3C263476UEHDL
271£888911122464E+01
24S7869043S35412C¢01
3.251/39227€2¢S630E+01
35360545463 1044LE+01
3.8315€0€9€66220E+01
4e14C099€5212542E401
LeW5S3943753223
4.791B8100123507uE+0L
541348933112767}LE+N1
Se491185€2S87023E+01
585943835€E41965E¢01
6e23822650LOELOLEFDL

6¢63083559127<S858E+01
7.032932€367C137E+01

E+01

TeblBI3B7264LT16RE+OL

AND CONJU
0.
1.00000G0000009/0£~02
2.0000C000C0C000E~02
3.0000C0G0C0000E=02
4449229999¢GC9QE~D2
6e8142868394C825E-02
1532858155484 1E-01
3.72509N855436345E-01
7.10£29610427151E-01
1.1661015056€A5/LE+DD
14763425C7764184E+00
2.44C2E46888265/6E+00
3.25€7N7L7S570LKEDD
4e1BGSCB0LLU9ILARE+DD
5e26429005133024E+00
6.014/56877398570E+0D
7.70852519€03235E+00
0.11€669€6759783TE+UD
1.0649412913€769E+01
1+23001760230S3L1LE4DL
1.6065953209263EE+01

1.5958C673371723E401
1.79€114€067792QE+01
2.00S4C 270163520401
z.zsuks1zauu472 E+01
2447C06392684760E+01
z.71e859111zzueEavn1

2.578690L0935L1PE40L
342513922752C63PRE+01

183

«97177922571035E-02
6.06885777644510E-02
»50805539134367E~02
4 716064951463 76LE~02
«3559132p/566842E-01
20 944853841218987E-01
+o 68035325734 462E=01
3. 89297788794 009E~01

95851 0E-D2
248553E-02
429632E~03
253801E-03

713914E-05
678382E-05
SS4LS5TLE=-05

»21755¢€7
¢3629250

-2.83773231/187 326E-05
-1¢11984106058818E~-05

ATE EIGENFUNCTIOMS

067533760 36S46E-02
«306255832536083E-02
« 8807485773965 7E~C2
1,16363508544427E-01
e 71640383766994E=01
3. 4411867193873 4LE~01
-639’709 10314E-01
51&25107067559#0E-01
«74721832116675E-01
¢ 7379789777 L6CE~GY
«43802726360362E-01
»86559791690964E-01
¢12958534477563E~01
«35792396/071104E~02
« 695817167980 86E-01
1.18287975089846E-01
B 86506340/959054E-02
50 3411520191 66E-02
3. 427551087637 40E~02
2,13381902R247938E-02
1.28467170758664E~02
2566176613083865E-03
«23652766018562E-C3
¢31319394335975E-03
1. 22L77581[756603E-03

«10409732532443E-04
«4B86(8698p80132E~-04

51 b

6571232944515
9.037]897 8363276
4.9300283L66326
~5.9431949101684
=2.22
=3.63
-3.68
-2.11
1.93767295627 85
1.52
2.8301278246670%
1.837623587928
1.3793186575132
9,265[71524561 96
S.7T4 945188 (63221,
3.3309601C58702

3.10800793111408

5¢22663851 83592
-4,5111054256482
=640799951213544
=4451907%2505507)
=2,53591648675140
=1.117/8216706086)
=3.695822864941"
~6.0698693741766)

+{370000000C0E+3D
0

L[]
-5,15251535 85605/6E=C2
-1.0187491280176QE=01
~1.510[2L263681225E-01
~2.22449038406235E~01
=3.271/0414380483GE~-01
~6.52202545 402390E-01
~1.0731407720426/6E¢00
-9,3185753090555/0E~01
-3, 443542649413 065E-C1
9.3158135%61167/9E~02
2.4395126 339391/1E-01
2.535F55571913c25-01
2.13692339808376E-01
1.3650775197384{0E-01
6+ 99LI102939982C[3E~02
2.7427518791711|0E-02
7.11411209514043E~03
2.790{267660963ADE~04
~7.30310853CO0UCRE~0G
-3.291?05335166235-04
~7.499317943298CE-05
~1.15083537 043135E-006
~2.38522654276351E-04
-3.053:1127592@1 E=C%
-2.93680566403198E-Ch

-1.6805999593333pE~-C8
=1.068633922450 16pE~04

.25973555E86275E-6h

-2.3625538515392 E=-0%



0.
1.00
2.00
3.00C/0000000CUDE-U2
4.49999969¢9599QE-02
E+81W286R83C4LC82/5E-02
1.5328581555484)1E-01
3.,725908C543€845E-01
T.1002961012715)1E-01
1.1681G1E05EE0SHE+TD
1.7436259776418%E+00
2. 44264 E38B265BE+DG
3.25670747957964E+0D
4.18S08044492402E+D0
£,244/2900513302/1E+0D
6e4lll54877392857|0E+03
7.70€52519€3323[5E+00
9.116/66967597887E+00
1.064/94129136756[3E+401
1.2301760230¢36{1E+D2
1.40€6953234263[7E+01
1.595RC673371723E+01
1.79€/11460€67792/9E+01
2.00910270u16352[9E+01
2423405120444720E+0 4
2.47C06392684760E+01
2.716RP9111224EUE+D]

2.978r90k5935k12E+51

3.25139227525630E+01
3453605656 S1SH41E+GT
3.83156069666220E401
4. 14T C9E5212542E +01
4o45SEIL3I7S3223BEL01
4.791/8100123507RE+01
5.134/8933112767|1E+01
5,491 85€2C87023E+01
5.855K3835641965E401
€.23822650468L0LE+0L
€.630F5591279850E+01
7.0320326367S197E+01
74448038 7264716RE+01
7.8970

10
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‘b.88880832720554E-05
3410271683566852E=-05
1. 35044074250 793E-05
Se71725849849897E-06
2¢340194831343113E~0

9e32443248|999940E-C7
3. 59237586{111701E~07
1434275644205201E-07]
e 88683144455833E-68
1.71882282036668E-08
5+ 88997231890 889E-09
1.94660630625993E~09

ANC CONJUGATE EIGENFUNCTIONS NOo 2 1.51000000000GE+0D

0e
3.88063033243247E-0D

7.69745139635919E-02
10144749347 36473E-01
1.696419551/382761E~01
2. 50947 334564264E~01]
5.13737271/069587E-041]
9, 044C4597705405E~0 1
8.68124792815401E-01
B3e 4537424160526 7E-0 1
1.19196350/875066E-01
2.89263748/237742E-C1
3, 16233332[528343E~01
2.70586456/07187 9E~0 1
2. 04741585567772E-01
1.54446341675700E-01)
1.215577132064129E-01
9.56485908048741E-02
702727245954 553E=-92]
Be65356077R24842E12
Pe76058455786112E -t 2|
1.46736948501758E~02
7.0716£2723300015E-03
3.08817934231163E-03
1,2177944526021L4E-03
k.20119922F75086E-0a
1.10100155145177E-04
7+32254500619477E-06
1.70496169813352E-C5
1.61936227%796085-05
1.03182196R28569E~65
5 456u5183054567E-06
Pe55315C94{311 57 8E~06
heG7573451409445E=06
e l3762633153342E~-07
He43811403561523GE~D7
e 46115337752297E~G §
1.18891375R86013€E=-08
P.33059539609191E~09
B.44089527994805E-11
P.33971875959158€-10

-1,93267633277 824E~-0S
=9..7138807 3449906E=-06
~he633346572453Y2E=-L0H
=211472332925064E-(H
=9,202)5336933350L7E-07
=3.83590936288736£E-07
~1.53910883719772c-07
=5+91161310¢5814LE~G8
=2419123949843859E-08
=7.7859650742273L1E~09

92-G1
2E-01
-1.224/3511420934L5E-02
1.2059C482074695E-01
1.858/3898252783E-01
1.95¢29% 38 964 1G9E-01
1.7055846 718164/LE=01
1.33611176688984E-01
3. 7BLB50 87 3469LWE=02
6.83(/33814454936E-02
4. 60521% 38393 322E=02
2.99(68352948385E-02
1.8700314£159376E-02

cauag7zsujsa-nt
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RESULTS OF SCALING

EXAMPLE OF PROGRAM RLEVX USING 4 EIGENSOLUTIONS FRON NUHERICAL EXAMPLE OF REPORT

VARIABLE NGe 1

GAUSSIAN VARIANCE INCLUDING CORRECTION FOR NEGLECTED EIGENVALUES

SCALED EIGENVALUES
2.264153€400
7.49533E-01

VARTABLE NO. 2

GAUSSIAN VARIANCE INCLUDING CORRECTION FOR NEGLECTED EIGENVALUES

SCALED EIGENVALUES
1.67534E+00
1.06773E+00

SIGMA RATIO OF TUREBULENCE MOCEL = 1,000

VARIANCE CHECK, VARIABLE NG, 1

CORRECT TOTAL VARIANCE = 1,11725€+01

SUM OF SCALED EIGENVALUES SQUARED = S5.53625E+30
GAUSSIAN VARIANCE = 5.58625E+00

TOTAL VARIANCE = 1.,11725E+01

VARIANCE CHECK, VARIABLE NOQ. 2

CORRECT TOTAL VARIANCE = 7,897C0E+Q0

SUM OF SCALED EIGENVALUES SQUARED = 3.94850£+¢00
GAUSSIAN VARIANCE = 3,94350Eep0

TOTAL VARIANCE = 7.89700E+CO

5,58625E+00

3.94850€+00
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COVARIANCE MATRIX FCR P VARIABLES
EXAMPLE OF PROGRAM RLEVX USIMG & EIGENSOLUTIONS FRCHM NUMERICAL EXAMPLE OF REPORT

1.800009 0.000300 0943717 =+261535
0.£00800 1.000800 «058157 =-¢090917

e 943717 +058157 1.000000 0.008000
-+ 261535 -.090017 ¢.000000 1.600000

COVARIANCE MATRIX FOR Q VARIABLES
EXAMPLE OF PROGRAM RLEYX USIMG & EIGENSOLUTIONS FRCM NUMERICAL EXAMPLE OF REPORT

1.000000 g.000000 «171608 + 3640547
0.,0000¢0 1.000000 «032251 -+063324%
«171608 «032251 1.000000 0,000000
« 840547 -+063324 8.000000 1.000000
FUNCTICONAL DEPENDENCE YATRIX
EXAMFLE OF PROGRAM RLEVX USING & EIGENSOLUTIONS FRCM NUMERICAL EXAMPLE OF REPORT
VARIABLE NO. 1
24241528 0.030000
0.000000 «749533
FUNCTIONAL DEPENDENCE MATRIX
EXAMPLE OF PROGRAM RLEVX USING & EIGENSOLUTIONS FROM NUMERICAL EXAFNPLE OF REPORT
VARIABLE NG. 2
1.675843 5.300000
0.000800 1.067731

CORRELATICON COEFFICIENT OF RESFONSE AND ITS FIRST DERIVATIVE = 2,831E-03
THIS COEFFICIENT SHOULD PE MUCH LESS THAN 1.0

DETERMINANTS OF COVARIANCE MATRICIES

DETA = 3443320E-22

DETB = B8425690E-C2

INCREMENTS?S

DX(1) = 1.0C27587E+40 0xt2) 8.4304804E-01

OF(LY = 1.5582014E-02 BF(2) 1.8533938E-02



187

FIFRST ROHW, FIRST COLUMNy, AND DIAGONAL OF JOINT PROBASILITY DENSITY FUNCTION

2.093E~-02 9,

Te777€E-03-1.412E-15
TellBE~QU~3.567E=16
64959E-05=-7.763E-17
8,202E-06-3.123E-17
1.067E-06-1.778E-17
1e464E-D7-64335E-128
20120E-08 4.337E-19
6.028E~C3 C.

2¢120E~03=44337E-19
1e464E-07 64335E-18
1.067E=36 1.778E-17
8,202E~06 3.123E-17
6e359E-95 7.763E~-17
TeH4B8E-04 3567TE~16
To777E-03 1e412E-1F

2.098E-02 V.
8.102E-03-1.144E-15
Te7831E-04=-2.525E-16
SeS46E~05-2.776E~-17
4.530E-06 Q.
%.351E-07 Q.
4o 4LATE-03=2.,670E~158
44G60E-09-3,469E~-12
1.102€-09 0.
4e960E-99 3.4L69E-18
4.497E~08 2.670E-1E
4o354E=-Q07 0.
4.590E-G6 3,
SeShEE=NS 2.77HE-17
7.781F-D4 2.525E=16
8+410ZE-03 1.114E-1S

2.N98E=-02 Q2.

3.291€-03-2.514E~15
1.151E~-04-6,337F-1€
S«866E-06-1420G3E~16
2o 4BRE-07-3.,944LE~17
2e231E-08=2.148E~-17
1e433E~09-HeH662E~-18
1.£75E-210 2.958E-18
2.002E-11 0.

1.C73E-13-2.958E-18
1.493E-39 6.662E~18
202315-08 2.1L3E-17
3e48BE~07 3.94L4E~-17
5.866E-06 1.,209€~16
1.151€-04 6.330E~16
3e291E~-03 2.514E-15

1,96AE=02 1,366E-15
4, E5LE~03~CS.462E-15
3.897€-04 4,152E~15
44019E~05~7.471E~15
4.89LE-DBE~Z,298E~15
6.469E-07 t£.386E-15
8.,S69E-08 1.778E-15
1,351E-08 2.901E-15
6. 74CE-0S~C,358E~16
3.402E~08 2.395E-15
2¢397E-07~4,678E-16
1.766E-0€ G.027E~-15
1.383E-05 1.647E-15
1,222E=-04=~3.305E-16
1e401E-03~5.1568E~15
1.18€E-02~2,935E~15

1eC72€E-02 1.411E-15
4,S27E-02~C.203€E-15
3.C98E-04 L.O4LEE-1S
24C€29E=05~7+55¢c=15
24S20E=-06~2.203E=15
24%51E-07 t.604%-15
2+57LE~08 1.811E-15
2.S38E-0¢ I,016E-15
1.27CE-0¢S~8,893%~-16
34529E-0¢ 3.438E-15
7. E83E~-08~4,3635~16
?.765E-97 <,233E-15
8,432E-0€ 1.,066E~-15
1.0625-04~€.551E~16
1,495€-32~5,169E-15
1.216E-02~2,507E~15

1.247E-02 2.419E-15
1.406E-03~C,E11E-15
5.332E-05+-3.841E-16
24 8695 ~-(€E~1.199E-16
1.74CE=-07~Z2.694E~-17
1.130E-08-1.3165-17
74649E~-1C0-4,122E-18
S5e8B8EE-211~C.050E~19
24325E~-11-€.116E-18
2e0LUE-1C=-2.075E~18
2492LE-DS S.779E-13
LefHh1UE-08 Z.134E~-17
TeCOLE=-07 44182E-17
1e21CE~BE 8.934E-17
2¢558E~-04 2.05CE-16
7.025E-03-2.918E-15

1.822E-02 Ea143E-15S
24EQLE-03-1.001E~15
24187E-0L S.766E-16
2e347E-05-64798E-15
24934E~06-14712E~14
3+4933E-07 2.638E-15
5+510E~08 1,30LE~15
94 047E-G9-24811E-15
.047E-C3 2.811E-15
5.510E-08-1.304E-15
J3e933E~y7-2.638E~15
20934E~C6 1.712E~-14
2434T7E=05 64798E-15
24187E-04=S,766E-16
24604E-C3 1.001E-15
1.622E-02~6.143E~15

Le641E-D2 6.560E-15
2.785€E~-03-84792E-16
2.053E=04 1.093E-15
1.563E~45~6.848E-15
1.394E-U6~1473CE~14
1.287E-07 2.835E-15
1.L78E~08 14365E-15
1.824E-09-2,862E~-15
1.824E-09 2.862E~-15
1.478E-D0B8-1.365E-15
1.387E-017-24835E-15
1.394E-06 1473CE-14
1.563€E-05 6.848E~-15
2¢053E-04-1,0935-15
2.785E=03 Ba792E-16
1.641E-02-64560GE-15

1.270E-02 S.314E-15
Se909E-04-1e4L4E~15
2.521E-05-1.87CE-16
1.413E-06-8.,085E-17
8.762E~38-3.187E~17
Be742E~C9=1.261E~17
3.938E-10-2.,271E~18
3e445E~11 £.997E8-18
3o L4SE~11-5.997E-18
3.938E~10 Z.271E-18
Se742E~09 1.261E-17
84762E~08 34187E-17
Le413E~06 8.085E-17
24521E-05 1.,870E-16
5093%9E~04 1e4lLLE-15
1.27)E-02-9.31LE~-15

1.186E-02 2.935E-15
1.401E-03 S.158E-15
1.,222E-04 3.3G5E-16
1.,383E-05-14047E-15
1.7665-06-9,027E~15
2¢397E-07 4.673E~16
3.402E-08-34395E-15
6. 740E~09 9.358E-16
14351E-038-2.,901E~15
8.969E-08-1.778E-15
Bel46YE~(QT=5,386E~15
L4 89LE~-D6 2,298E-15
44019E~05 7.471E~-15
34997E-04-44152E~15
4e654E-03 J.462E-15
1.966E-02~1+366E~-165

1.216E-02 3,507E-15
1.495E-03 5.,169E-15
1.062E-04 64551E~16
8e432E~-06-1a066E~15
7e765E-97-9,233E-15
7.883E-08 4.363E-~16
84529E~-09-3.438E-15
1.,270£-09 3.893E~-16
2+9383E-09-3,016E-15
2¢574E~08-1.811E~-15
24451E-07-5.604E-15
2¢52NE-06 2.209E-15
2492%E~-05 7.559E-15
3.998E-0b4-4.L4EE-1S
Le927E-03 9.203E~-15
14972E-02-1.411E-15

7.025E-03 2,9182-15
20558E~-04~3,G5CE~16
1.210€-05-8,934E-17
Te0OULE=-(7=4,182E-17
HelblbE-08-2.280LE-17
2e924€-09~-9,779E~-18
2.044E-10 2.075E-18
2e325E-11 640116E-~18
5.886E-11 5.050E-19
7.6495-10 4.123E-18
1.130E-08 1.316£~17
1.745E~-07 2.604E~17
2.869E-06 1.199E-16
Se332E-05 3J.841E-16
1.406€-03 5,611E~15
148L7E~Q2~2e419E~15
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FIRST RONW, FIRST COLUMN, AND DIAGONAL OF JOINT CHARICTERISTIC FUNCTION

1.000E+00 0. 9. 48LE-01 0. 8,140E-01 0. 6.410E-01 0.
4.,698£-01 J. 3,228E-01 Q. 20111E-01 0. 1.,307E-01 0,
7.693E-02 0. §,310E~-02 O 2.298E~-02 Q. 1.167E-02 0O,
5¢639E~03 2. 2.594€-03 Q. 1.136E-L3 U Ls73GE=04 Q.
1.874E-04 0. 7.06LE=-05 Q. 2.531E-05 Q. 8,626E=06 0.
24794E-06 Oe 8.€607E-07 0. 2.517E-07 0. 6¢993E~03 0.
1.848E~08 O, 4,640E-0¢ Q. 1.106E-09 0. 2.504E-10 0.
5383E-11 J. 1.C99E-11 Q. 2.132E-12 0. 4.G35E-13 0,
1.370E-13 0, 4.,035€~-13 Q. 2.132E~12 0. 1,099E-11 0.
5.383€-11 0. 2.504LE~1C Q. 1.106€E-39 Q. L.640E~09 9,
1.849E-08 9, 6.993E-02 U, 2.517E=C7 0. 8,603E-07 Q.
24794E-06 Q. 8.626E-06 C. 2.531E=35 0. 7.064E=~05 0.
1e874E-04 J. 4.73CE~0&4 O, 1.135E-03 0. 2¢594E-03 0.
5639E-03 0. 1.167E~0z2 Go 2.293E-02 0. Le310E~-02 0.
7.693E-02 Q. 1.3076-01 Q. 2.111E-01 0. 3.238€E-01 O,
4.638E-01 8, 6.41CE-01 0. 8e140E-01 0. 9,484E~01 €,
1.G00E+00 Q. 9.483E~01 C» 8.122E-01 0, 6.,354E~-01 0.
4+59%E=-01 3. 3.112€-01 Q. 1.985E~-01 0. 1,2G0E-~0L 0.
6.832€E-02 2. 3.769€E~02 0, 1.965E~02 0. 9,765E-03 0.
ke628E-03 0, 2.091E-02 0. 9,007E~G4 0. 3.697E-04 0.
1.446E-04 Do 5¢383E-05 Q. 1.909E-C5 0. beWiE~-06 Do
2.068E-06 0. 64319E-07 Co 1.836E-07 0o SsU71E-08 0
1.332E-~08 0. 3.324E-0¢° 0, 7.836E-10 Q. 1.,777E-40 0.
3.806E-11 0. 7.742E~12 0. 1.497E=12 Q. 2.823E-13 0.
9,561E-14 Q. 2.823E-13 G. 1.497€~-12 C. T.TU2E-12 0o
3.806E-11 2. 1.777€-16¢ Qo 7.886E-10 Q. 3.324E-09 0.
1.,332e-08 0. S.071E-08 ¢, 1.336E-07 Q. 5+319E-07 0.
2.C68E-06 9, 6e441E-06 0, 1.939E-~05 B 54383E-05 0.
Lel4bBE-DL 0. 3.€97E-04% O, 9.007E=-04 O, 240S1E~-03 0.
Le628E-03 0. 9,765E-03 0. 1.965E=32 Q. 3.769E-082 Q.
6+892E-02 1. 1.200E-01 0. 1.%85E-01 C. 3.112E-0L 0o
44599E-31 % €e354E-01 Q. 8.122E=01 Ue 9.,483E~01 0.
1.000E+D0 0. 9,802E-01 C. 6.709E-01 0. 4,308E-01 G
2452E-01 O, 1.252€-01 0. 5.780E~G2 0. 2.41)E-02 0.
9,386E-03 7. 3,89%€E~-03 0. 9.527E=04 0. 2.643E=-04 Do
6.64LE6E-05 T, 1.E5P5E~05 0. 3.077E~36 0., 5.675E~07 B,
e bl E~-0U8 T, 1.417E-08 Co 1.917E-09 0o 2¢338E-10 0»
2.571E-11 3. 245409€-12 G» 2.277E-13 Q. 1.833E-14 0.
1.323€-15 G, 8.683E~-47 0, 5.110E£-18 Co» 247G9E-19 0.
1.293E-20 0, 5.558E=22 Go 24153E=23 0. 7.820E-25 0.
8.065€=-26 0. T.820E-25 0. 24153£-23 0. 5+558E=22 0.
1.293€-20 2. 2.709E=1¢ (. 5.11JE-18 0. 8.683E~17 0O,
1,325€E~15 0. 1,833€-14 0. 24277E~-13 G 24549E-12 Q.
2+571E-11 Do 2.338E-10 0. 1.917E-09 O, 1.447E-083 90,
Ge4lLiE=0Y D S«675E=-07 Qe 3.C77E=-06 0o 1.505E=05 0.
6.64L6E-0S 0. 2.E4BE-04 G, 9.527E-04 U 3,095€E-03 0.
9.086E-03 0. 2.410€-02 g, 5.780E-02 D 1,253E~01 O»

2+452€E-01 Q3. 4.308E-01%1 Q. 64709E~G1 C. 9.002E~-01 0.



COMPUTED VALUES OF X AND NIX)

0.

1.0027587E+0C
2.0055174E+90
3.0082761E+080
Le011C3LAEFQD
5.0137935E+00
6e01E5522E+00
7.0193109E+00
8.0220696E+N(]
2.0248283E+00
1.5027587E+01
1.103C346E¢01
1.2333104E+01
1.3035863E+01
1.4N38622E+G1
1.5941380E+01
1.6G44139E+01
1.704€898E+01
1.80496S7E+01
1,S052415E+01
2400551 74E+01
201057S33€E+901
2.2760691C+01
2430E34L50E¢01
2.4066209E+01
25068967E+01L
2.€071726E+01
2.70744852%01
2e48977243E¢01L
2908CG002E+01
3.C082761E+01L
3.1085520E+C1
3.2088278E£+(01
3.3091037E%51
3.4092736E+01
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1.3474656E-01
1.2746600€E-(1
1.0203034E~01

B. 274 E262E~-02

5.81229¢S0E-02
3, 8195555€=-(62
2.4032236E-02
1.48034€1€-02
9,C793143E~-03
5.5¢596€05~013
3.4756023E-03
241737180E-33
1.3€66137E-03
8.6235751E=04
5¢ 4557255E=-04
3.4580208E-00
2.1948558E~-04
1.3945934E-04
8.8E£85815€E~05
Se 6435779E-€5
3.5933260€-05
2.2889875E~05
1.4587248E£~-05
9.3000929€-06
5, 9323970E-06
347874420E-06
2. 42224C5€E~-06
1.5552427E-(C6
1.0078336£-06
6. 6737529€E-07
4,63867C7E-07
3., 5549787E-(7
3.2001749€E-GC7
3.5016234E-07
4. €215746€E-07



LEYEL CROSSINGS
EXAWMPLE OF PROGRAM RLEVX USING 4 EIGENSOLUTIONS FROM NUMERICAL EXAMPLE OF REPORT

DIMENSIONAL NON-DIMENSICNAL CROSSINGS PER CROSSINGS PER

LEVEL LEVEL UNIT TIME ZERO CROSSING
X X/SIGHA X
O Os 1.347€-01 10000E*00
6.685E-31 2.000€~-01 1.315E-01 S,755E-01
1.337E+00 4.,000E-01 1.221E-01 9.059€E=-01
2.006E+GC 6+00CE~-01 1.080E-01 8.017E-01
24 6TLE+DD 8.GC0E-D1 9.140E~02 65.783E=-01
3.343E+00 1.06CE+0Q ToL421E-02 S.507E-01
4e0115+10 1.20CE+QQ Se812E-02 4.314€-012
4,680E+08 1.400E+080 4.420E~02 3.280E~-01
50348£+03 1.E0GE+90 34285E=22 24438E-01
6e017E+10 1.80C€E+02 2.403E-02 1.,784LE~01%
6,635 +08 2.600E+0D 1.742E-02 1.292€-01
7.354E¢90 2.200E+00D 1.257E~-02 9,332g~-02
B,022E+00 2.400E+DC 9.,079E-03 6.738E~02
8.691E+00 2.6GGE+DD 6.57CE-D3 4.876E-02
9,359E+040 2. 8GQE+0Q0 L.770E-03 3.540E-02
1.073E+31 3.000E+00 Je47€2-03 2.579E~-02
1,070E+01 3,200E+00 2454GE-03 1.885E-02
1.,136E 408 3.40CE+0C 1.861E-03 1.381E-02
1.2035¢01 3.E00E+0D 1.3676~03 1.014E-02
1.270E+01 3.80CE+00 1.0056-03 7.460E-03
1,337E+01 4.00CE+0D 7.402E-04 5.493E-03
1.434E401 LoZGCE®OO S.456E-04 4.049E-03
1e471E40L 4.4CCE+QD 4,025e-04 2.987E-03
1.5385+01 L. EOCE+DD 24972E-04 2.205€-03
1.634E+371 4,800E400 2+195E-04 1.629E-03
1. 671E%312 5« (00E®DD 1.622E-04 1.204E-03
1.,738E+031 SecOGE+DD 1.199E-04 8.900E~04
1.8035E+01 Se4O0CE+0GD 8.369E-05 6.582E-04
1.872E+01 S.608E+00 6+561E-85 4.869E-04
1.,939€E+01 5.800E+00 4.855E~05 3.603E-04
2.006E+01 6. B0CEXQO 3+533E-05 2+.667TE~0G
20072E401 6420CE+00 2+660E-05 1.974E-04
24129E401 6+40CE+00D 1.97LE-05 1.462E-0%
2.206E+01 6.E00E+D0 1.459E~05 1.683E~-04
2.273E4+01 6.800E+00 1.081E-05 8.019E-05
2434032401 T« COCE+DO 8.005&£-06 5+941E-05
2.407E401 7.200E+00 5.932E-06 4.403E-0S
2.473E401 7.40CE+00 4L,398E-06 J+264E~05
2.540E491 7.606E+80 34262E-06 2.421E-05
2.607E+01 7.80C0E+00 2.422E~-06 1.798E£-05
2.674E#TL BR.CO0CE+DBD 1.802E-06 1,337E-~05
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SUBROUTINE CFLCANS,F)

A SUSROUTINE T0 EVALUATE THE CHARACTERISTIC FUNCTION OF THE
NON-GAUSSTAN RESPONSE FOR THE CASE OF CORRELATED GAUSSIAN COMPONENTS
SUBROUTINE INTECGRATES FUNCTION OF THE FORM

(2.9 ¢

TI®A(-1)¥X/2 + Y(T)*B({«1)%Y/2 + I¥PIZ2%F*X(T)*C*Y)*DX*DY

FRON ~INF TG +INF, WHERE X,Y ARE N VECTORS, (T) DENOTES TRANSPOSE,

-1

) DENOTES INVERSE, Ap8 ARE SYMNETRIC COVARIANCE MATRICIES,

AND I DENOTES SGRT(~1.).

ANS =

ANSHER

A = INPUT CCRRELATICN MATRIX FOR FIRST SET OF GAUSSIAN PROCESSES

AL,
A2

B1,C1 = SCRATCH- MATRICIES USED IN RECURSIVE COMPUTATION
= oS*(INVERSE OF CORRELATION MATRIX A)

B = INPUT CCRRELATICN MATRIX FOR SECOND SET OF GAUSSIAN PROCESSES

B2

= <S5*(INVERSE OF CORRELATION MATRIX 8)

C = FUNCTIOMNAL FATRIX

DETA = CETERMINANT OF A

DETE = DETERMINANT OF B8

F = INDEPENDENT VARIABLE OF CHARACTERISTIC FUNCTION

N

cop

NUMEBER QF HMCDIFIED BESSEL PRCCESSES

COMFON /COR/ A(8,8),8(848),C(8,8),N,ISIZE,DETAyDETS,
121108,8),81(8,82,C118,8),A218,8),B21848)

DATA PI2/6.28318533717958/

Y MATRIGIES
00 5 I=i,N
00 € J=I,HN
A1(1,J)=A2(T,))

5 81%1,J)=82(1,J)

6

COM

F2=F*pI2
N0 6 I=1,N
00 € J=1,4N
Ci(I,J)=C (I’J) *F2

PUTE ANSHER fOR FIRST PAIR OF INTEGRATIONS
A11=A1(1,1) ¢ 811=81(1,1) ¢ Ci1=C1(i,1)
DIV=04L,¥A11%E11+C11%%2 & ANS=1./(DETA*DETB*DIW}
IF (N=1) 16G+1035,10

COMPUTE ANSHEFR FOR ADDITIONAL INTEGRATIONS

i¢

5p°

60

100
195
106

00 100 NI=2,N

K=NI-1i

80 60 I=NI,N

AIKI=A11IK,I) $ BiKI=B1IK,I) & Ci1KI=Cil(X,X) & C1IK=Ci(I,K)
00 ED J=NI,N

ALKJ=AL1(KyJd) $ BiKJ=BL(KsJ) & CLKJI=C1(K,J} § C1JIK=C1(JyK)
IF (J.LT.I) GO TO SO

AL(I,J1=A1(T,0) ~ (Lo *¥B11 ALKI*ALKI+ (C11* CALKI*CLIK+CLIK*ALKID =
4A11*C1Ik*C1JK) ) /DIVY
Bi(I,J)=81(I,J)~(4¢*A11¥BLKI*BL1KI+(CLL1¥(BIKI*C1iKI+CLKI¥BLKI) ~
1.B11¥C1KI*C1KJ)I/D1IV
CL{IyJI=C1CT4d)~(L ¥ (AL1¥CLIK*BIKI+BILRALKI*CAKI~CLL*ALKI*BIKIY +
1G11*CLIK*CLKJ) /DIV

CONTINUE

A11=A1(NILNI) $ 811=B1INI,NI) $ C11=CL1(NI,ND)
DIV=4.%AL11¥Bli+C1i1¥*2

ANS=ANS/01V

ANS=SORT (ANS}

RETURN

CF100001
CF100002
CF100003
CF100004
CF108005
CF1000606
CF100007
CF100008
CF100009
CF100010
CF100641
CF100012
CF100013
CFL00014
CF10G015
CF100016
CF100017
CF100048
CF100019
CF100020
CF100021
CF100022
CF160023
CF100024
CF1G3625
CF100026
CF100027
CF100028
CF100029
CF100030
CF100031
CF106032
CF100033
CF100034
CF100035
CF100036
CF100037
CF100038
CF100039
CF100040
CF1006%1
CF1000%2
CF100043
CFL100044
CF100045
CF100046
CF10G047
CF100048
CF100049
CF100050
CF100051
CF100052
CF100053
CFL00054
CF10G055
CF106056
CF100057
CF100058
CF1G0059
CF100060
CFL06061
CF100062
CF100063
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COMPUTE INVERSE AND DETERMINANT OF CORRELATION MATRICIES

ENTRY INVAS

IF tN~1) 160,110,110
116 00 13C I=1,RN

00 130 J=1,N

A2(I4J)=A(1,J)
130 B2(I,J)=B({I,J)

CALL INVR{AZ2,NyDETA,ISIZE,ISIZE}

CALL INVR(BZyNyDETB,ISIZE,ISIZE)

DO 140 I=f,H

D0 140 J=1,R

AZ(I,J)=AZ(I’J'/20
140 B2(I,J)=B2(1,J)/2.

IF ((DETAeGTe04) s AND(DETB.GT404)) RETURN

HRITE (641500 OETA,0ET8
150 FORKAT {1H ,5X,*DETERMINANT <LEe ZEROy DETA =*¥,4E11,39%, DET8B =%,

1€11,.3)

GO TO 138
168 HWRITE (6,170) N
170 FORNMAT (LR 5Xs*HATRIX DIMENSION +LE. ZEROy N =*,1I3}
180 STOP & END

SUBROUTINE CF2(ANS,F1,F2)

A SU3ROUTINE TO SVALUATE THE 2~0 CHARACTERISTIC FUNCTION OF THE
NON-GAUSSTIAN RESPONSE FOR THE CASE OF CORRELATED GAUSSIAN COMPONENTS
SUBPOUTINE INTEGRATES FUNCTION OF THE FORM

CFL0006%
CF10UC65
CF100066
CF100067
CF100068
CF100069
CF100070
CF100u71
CF100072
CF160073
CF100074
CF130075
CF100076
CF100Q77
CF1043078
CF100079
CFiig0e0
CFi100081
CF100082
CF100083
CF10003%4

CF200001
CFa209082
CF240003
CF200004
CF200005

(X(T)*AL=1) %X + Y(T)*B(=1)*Y + I¥PI2*(X(T)*C*Y*F1 + X(T)*D¥Y*F2)*DX*BYCF200006

FROM =INF TC +IMy HHERE X,Y ARE N VECTORS, (T) DENOTES TRANSPOSE,
(=1) DENOTES INVERSE/2, AyB, ARE COVARIANCE MATRICIES, I IS SGRT(-1.)

CCHEON /COR/ A(B,8),B(8,8),C(858),0(8,8)9NsISIZE,DETA,DETS,
1A1(8,8),y81(8,48)+5C1(848),A2(8,8)9B2(8y8)
OATA FP12/6.28318538717958/

CFz06007
CF20u008
CFrz200009
CcFa200010
CF200011
CcF200012

- CF200013

A = INPUT CORRELATICN MATRIX FOR FIRST SET OF GAUSSIAN PROCESSES
ANS = ANSHER

A2 = «S*{INVERSE GF CORRELATION MATRIX A)

A1,81,C1 = SCRATCH ARRAYS USED FOR RECURSIVE COMPUTATION

8 = INPUT CCREELATIGN MATRIX FOR SECOND SEY OF GAUSSIAN PROCESSES
B2 = +5*(INVERSE OF CORRELATION MATRIX 8)

C = FUNCTIOML FATRIX FOR F1

D = FUNCTIONAL KATRIX FOR F2

DETA = DETERMINANT OF A

DET2 = DETERMINANT GF 8

F1,F2 = INDEPENCENT VARIABLES OF CHARACTERISTIC FUNCTION

N = NUMBER CF PCOIFIED BESSEL PROCESSES

IF (N} 168,107,4%
COPY MHATRICIES

4 D0 5 I=1,N
B0 5 J=IsN
AL{I,3)=A2(1,H)

5 81(I1,J)=B2(1,J)
DO 6 I=1,N
DO €& J=1,NM

6 CL{I,)=(C(I,JV*¥FL1eD(I,J)*F23%PI2

COMPUTE ANSKER FOR FIRST PAIR OF INTEGRATIONS

CF200014
CF200015
CF200016
CF200617
CF200018
CF200019
CFa00020
CF200821
CF236022
CFa200023
CF200024
CF200025
CF230826
CF200027
CF200028
CF2g0029
CF200¢30
CF200031
cra4ge32
CF200033
CF20003%
CF205035
CF200836
CF200037
CF200038




c
C CoM
10

55
60
io0g
165
i%6

187

(3 X3 X+

coM

110

13¢

140

is5¢

1690
170
i8¢
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411=A1(1,1) ¢ B1i1=81(1,1) $ C11=C114,1)
DIV=4.¥A11%€11#C11%*2 ¢ ODIVI=0ETA*DETB*DIV
IF (N-1' 160,105,190

PUTE ANSKER FOR ADDITIONAL INTEGRATIONS

DO 100 NI=2,N

K=NI-1

D0 E0 I=NI,N

ALKI=A1(K,I) $ CLIK=CIi(I,K)}) $§ BiKI=Bi(K,I) $ CiKI=C1{K,I)
00 €0 J=NI,b

CiKi=C1(K,y,J) $ BiKJI=B1(KyJ)

IF (JelTeI) GO TO 55

ALKJI=A1(K,J} § C1JUK=C1(JyK)
AL(I50)=A1(T5J)=(G4,4*312¥ALKI*ALKIH{CLLI¥ (ALKI*CLIK+CLIKFALKY)
1-A11*C11K*C1JK))/0D1V
Bl(I9J)=B1(I4J)=(4*A11*¥BLKI*BLKJI+ (C11* (BL1KI*C1KJ+CLKI*BLKI)
1-B11*CIKI*C1KJ))/DIV

Ci(Iey =010 J) =4, ¥AL1¥*CLIK*BIKI+L4,¥BL11¥ALKI*CiKI=4 . ¥*C11 ¥ALIKI*
181KJ+C11*C1IK*C1KJI) /DIV

CONTINUE

A11=A4(NIZNI) & BL4=BL1(NI,NI} ¢ C11=CL(NI,ND)
DIV=4,%A11¥Bi11+¢C11%¥*2

DIVA=DIVi*DIV

ANS=1./SQRT (DIVL)

RETURN

ANS=1.0
60 TO 106

PUTE INVERSE AND DETERMINANT OF CORRELATION MATRICIES
ENTRY INVRS

IF (N-1) 160,113,120

DO 13C I=1,8

B0 138 J=1,4N

A2(TI, N=A(IsJ)

82(I,J)=8(I, N

CALL INVR{A2yN,yDETA,ISIZE,ISIZE)

CALL INVR(B2,4N,DETB,ISIZE,ISIZE)

00 140 I=14K

DO 140 J=1,N

A2tTI4J)=A2(1,0) /2,

B2(I,J)=82L1,J) /2.

IF ({DETA.GTeD0.)sAND.(DETB.GTe0s)) GO TO 106
HRITE (€,150) DETA,DETE

FORMAT (1H ,5X,*DETERMINANT L,LE, ZERO, DETA =*,E11.3,*, DETB =¥,

1€11.3)

GO TO 180

HRITE (6,17C0) N

FORMAT (1H 95X,¥MATRIX DIMENSIOM +LEe ZEROy N =%41I3)
STOP € ENO

CF200039
CF200040
CF200G641
CF200042
CF200043
CF200044
CF200045
CF200046
CF200047
CF200048
CF200049
CF200050
CF200051
CF280G652
CF200053
CF200054%
CF200055
CF200056
CF220057
CF200058
CF200059
CF200060
CF200061
CF200062
CF200063
CF200064
CF200065
CF200066
CF200067
CF200068
CF200069
CF200070
CF200471
CF200072
CF200073
CF205074
CF200075
CF200076
CF200077
CF200078
CF280079
CF200080
CF200031
CF206082
CF20D083
CF200084%
CF200085
CF200086
CF200087
CF200088
CF200089
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SUBROUTINE COEF(I,A,C) COEF0001

C A SUSROUTINE TO FILL G ARRAY WITH THE COEFFICIENTS OF THE COEFOQ02
C POLYNOMIAL REPRESENTING A(X) BETHEEN X(I) AND X(I+1). NPOLY IS THE COEF0003
C THE ORDER OF THE POLYNOMIAL COEF0004
c COEFQO005
OIMENSICN A(1),C(1) COEFQ006
COHMON ZARRAYS/ EUB8)EFP(45,8)3EFQ(45,8) 9X(45) 4FFLL45)9FF2(L45), COEF0007

1NPy NPOLY COEF0003

DATA NPOLY/Y/ COEFg00S

IF (I.GT«1) GO TO 10 COEF00LE

N=1 € GC T0 30 COEF0011

10 IF (I.LE.NP-2) GO TQ 20 COEFQOL2
N=NP-3 $ GO TO 30 COEF0043

20 N=I-1 COEF0014

30 FA=A(N) 8 Xi=X(N) $ N=N#1 $ F2=AMN} $ X2=X(N) COEFQ0LS
N=N#1 & F3I=AIN) € X3I=X(N) COEF0ALs

N=N#1 & F4=A(N) $ X4=X{N) COEFO017
F1=F1/(X1=X2)/(X1-X3)/ (X1=X4) COEFQ0138
F2=F2/ (X2=X13/(X2=X3)/ {X2=%X4) COEFD019
F3=F3/(X3=X1}1/ (X3=X2) 7 (X3=X4) COEF0Q240
FLU=F4/ {(X4=X1)/ tX4=X21 /7 (Xti=X3) COEFU021
CULI=FLFZ+EI¢FL COEF0022
CU3)==FL®IXC+XI#XU) ~F2¥ (XL X3 #XH) ~FIF (XL14X2+X4) =F4¥* (X1+X2+X3) COEF0023
C(2)=F1*(XZ2¥ (X3 +X4I #XT*XL) +F2¥ LXLF (XTI #XL) £ XI*XLY) +FI¥F(XL*¥(X2 +X4) ¢ COEF0024&

1A2% XL ) +FL ¥ (XL* {X24X3) +X2*X3) COEF302%
COLV=~FL¥ X2¥ AT XY= F2¥ AL * X ¥ XL -FI¥ X1 *X2¥ XU =FLH¥ X1 ¥ X2¥* X3 COEFdQ26
RETURN ¢ END COEF0027

PROGRAM EIGUCINPUTOUTPUT.FUNCHTAPES=INPUTTAPES=0UTPUT TAPE?= EIGUOGGL

1PUNCH) EIGUa002
EIGU3003

THIS IS A PROGRAM TO GENERATE EIGENVALUES AND EIGENFUNCTIONS FOR THE EIGUOS06
NON-GAUSSIAN TURBULENCE MODEL RESPONSE CALCULATICNSt THE EIGEN- EIGUBO0S
FUNCTIOMNS ARE REPRESENTED BY PIECEWISE POLYNOMIAL FUNCTIONS OVER EIGUOOCB6
THE RANGE OF INTEGRATION, ANO ALL INTEGRATIONS ARE EXACT WITHIN EIGUaGaa7?
THIS APPROXIMATION, EIGUOCOS
THIS PRCGPAY¥ IS FOR LONGITUDINAL GUSTS ONLY EIGUAGO9
PyQ ARE EIGENFUNCTICN ARRAYS FCR ITERATIVE PROCESS EIGUD04i0
EFP IS ARRAY FOR STORAGE OF EIGENFUNCTIONS EIGU3011

ER1 IS ERROR TOLERANCE ARRAY FOR EIGENVALUES USING 21 POINT EIGFN APP,EIGUOOLZ2
ERZ IS ERROR TOLERANCE ARRRQAY FOR EIGENVALUES USING 41 POINT EIGFN APP.EIGUOGL3

¥(I) IS ARRAY CCNTAINING ABCISSA: OF EIGENFUNCTIONS EIGUOOLS
NP IS THE MAXIMLM NUMBER OF ABCISSAE POINTS FOR EIGENFUNCTIONS, EIGUOCLS
CURRENTLY SET 70 41, VALUES .GT. 45 REQUIRE REDIMENSIONING, NP MUSTEIGUOG16

BE AN ODG MUKBERe EIGUGO17
SHCULD COMFLEX POLES OCCUR, ONLY ONE OF EACH CONJUGATE PAIR EIGUBCL18
IS TO BE USED EIGUOO19
£I6U0024

INPUT DATA? EIGUJG21
RESTRT (L1) LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRT IS EIGUOQ22
TRUE DATA DECK PUNCHED BY PREVIOUS RUN CAN BZ USED £IGU0023

TG RESTART COMPUTATION. EIGURO24

EIGUOO25

IFf RESTRT = .FALSE. DATA DECK IS AS FOLLOKS EIGU0026
NFOL (I1) MNUMBER OF SYSTEM POLES TO BE REAB. 1IF COMPLEX POLES EIGUG027
OCCUR, ONLY ONE OF EACH CONJUGATE PAIR IS USED. EIGUCG28

(CI(I)5AItI)4I=1,NPOL) (4E20,10> NUMERATORS AND POLES RESPECTIVELYEIGU(GDZ2S
CF SYSTEM TRANSFER FUNCTION FARTIAL FRACTION EXPANSION EIGUQQ3g
IN CCHPLEX FORM, IF COMPLEX POLES OCCUR, ONLY ONE OF EIGUGO31
THE PARTIAL FRACTION COMPLEX CONJUGATE TERMS IS USED. EIGUO032

OO0/ OADHONOHODOOOO
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REAL PART OF POLES MUST BE NEGATIVE FOR STABLE SYSTEM,

SU,U,UL (3F10.5) TURBULENCE VELOCITY STANDARD DEVIATION,

VEHICLE MEAN 7RUE AIRSPEED, AND TURBULENCE GUST
VELQCITY SCALE LENGTH.

NEV (I1) TCTAL NUMBER OF EIGENVALUES/EIGENFUNCTIONS REQUIRED.

NEV MUST BE LESS THAN OR EQUAL TO S.

IF RESTRT = ,TRUE. DATA DECK IS AS FOLLOWS

(ALL UT LAST THREE CARDS (EORyCONT,NEY) ARE PUNCHED BY
PREYIOUS RUN)

SU,U,UL (FORMAT 17) SEE DESCRIPTION ABOVE

29B1,NPCL, {CI(I)HAI(I),I=1,NFOL) (FORMAT 6)

NP,LO,HI (FCRMAT 7)

JIEUI) s (X(K) yEFF(KyJ) s K=14,NP) (FORMAT 13}

END OF RECORD INDICATES ENUO OF EIGENVALUE/EIGENFUNCTION DATA.

CONT (L1)

CF THE LAST EIGENSOLUTICN IS TO CONTINUE, IF FALSE IT IS ASSUNED
THAT THE LAST EIGENSOLUTION IS ACCURATE AND ITERATION OF THE
NEXT SOLUTICN IS TO BEGIN.

NEV (IL) TOTAL NUNBER OF EIGENVALUES/EIGENFUNCTIONS SOUGHT (.LE.5)EIGUI052

OIMENSICN E(5) 4ER1(S) 4ER2(5)
COMFON ZARRAYS/ X{45)sPU45) 3QL45) 9 NPy NSKIPySNPCLY9EFP{4545),C(4h),

10¢4)

COMMON /CCNST/ CI(5),AI(5),NPOLsB,yBL

COMNMON /JEVAL/ EVP

COMFLEX CIo AT % REAL LO & LOGICAL RESTRT,.CONT

DATA ERI/1.E-3/

CATA ERLJERZINP/LeE=4yLleE=tySeb~tyleE=351eE=291eE=5y1eE-5,51sE~4y
15eE-byl.E~3y4i/

CATA (X(I)5T=1,413/009e01+4025¢039e045900690088401071,41341,
1616129018825e215350242494269%9429659032359e35065e3776944047,
2e43189e45889448597451299e54007056719e53U19e62125¢6482946753
2e70249072S4 3475659078359 0810630837690 86475¢89189¢9188949459,
40972917

FORVAT
FORPFAT
FGRY¥AT
FORMAT
FORPAT
FORMAT
FORNAT
FORVAT
FORNAT
FORNMAT
FORNMAT
FORKAT
FORKAT

(11)

(4E20.10)

(3F10.5)

(I10)

(L1}

(3X9E20e1255%X9E20.12,24X512,/9 (4E20,12))
(hXs13927X42520.11)

(8F10.5)

(*B =%,F20612y1Xy%*B1 =%,E20.12,5X,*NPOL =%,12,/,(kE20.,12})
(¥NP =¥,13,5%X,*RANGE OF INTEGRATION =%,2E20.11)
(43X, I2,E28e11,4/5(2E25414))

(*SU =%,E154791 X3 ¥MTAS =%9E15.731Xy *UL =¥4E15,7)
(UXyT15,797X9EL5e735X9E15.7)

READ (5,45) RESTRT
IF{.NOTL.RESTRT) 6O TO 20

c

C RESTART IS TPUE, READ DATA FROM PREVIOUS RUN
REAG (5,17) SU,U,UL

READ 15,6) 8,31,NPOL, (CIC(I),AI(1),I=1,NPOL)
QEAD (5,7) APyLOyHI

00 15 I1=1,6 S

REAC (5,13) JE(JI) 4 (XIK)HEFP{KyJd) sK=1,NP)
IF (ECF,5) 16415

CONTINUE

GO TO 380

16 REAC (5,5) CONT

15

LOGICAL VARIABLE, IF TRUE IT IS ASSUMED THAT ITERATION

EIGUCO033
EIGU0034
EIGUO035
EIGUOO36
EIGUDO037
EIGUO038
EIGUO039
EIGU0040
EIGUOJLY
EIGL042
EIGUDOG3
EIGUOOLG
EIGUOO04S
EIGU004 B
EIGUOG47
EIGUC0438
EIGUO049
EIGUO0S50
EIGUOUS1

EIGUO053
EIGUOOSH
EIGU0O55
EIGUDDS56
EIGUOCS57
EIGUOOS53
£IGUE059
EIGUOO60Q
EIGUOOGL
EIGUOO0B2
EIGU0063
EIGUB0bB4
EIGUQ06S
EIGUGAGE
EIGUOOG7
EIGUBG68
EIGUD069
EIGUOLTO
EIGUOG71
EIGUJ072
EIGUIO073
EIGUDO7 &
EIGU0075
EIGUJGZ6
EISU0077
EIGUO078
EIGUI079
EIGUDGSO
EIGU0Q81
EIGUG082
EIGUGEB3
EIGUDDBL
EIGUQD85
EIGUD086
EIGUU087
E£IGUN088

.EIGUG08S

£I6U003S0
EIGUBuWIL
£I6U0092
EI6U0093
EIGUOO9 L
EIGUGO9S
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READ (5,1) NEY
I=J1-1
00 18 K=14.NP
18 PUKI=EFP(K, 1)
IF («NOT.CONT) GO TO 95
I1=I1-1 § 1I=I1-1
GO TO 95
RESTART IS FALSEs READ DATA DEFINING NEW PROBLEMN.
280 READ (5,1) NPOL
IF (NPOL) 9103,9C€0,21
21 READ (5,20 (CICI),AI(I),I=1,NFOL)
CHANGE SIGN OF EXPONENT SINLE ALL SUBROUTINES EXPECT NEGATIVE OF
TRUE EXFONENT,
00 22 I=1,NFOL
22 ATM(I)==AItD)
REAB (553) SU,U,UL
B=U/2.,/UL ¢ HI=20./8
IF (HI.LE«i.) GO TO 26

$ Bi=Suru/uL

SCALE X VALUES TO COVER RANGE OF INTEGRATION, USE EI,EVP,EROR FOR
TEMFCRARY STOFRAGE.
EI IS LCWER LIMIT OF POWER LAW SCALING,
NPHR IS POWER OF SCALING,
GRIGIN, LOW VALUES WILL PROVIDE MORE EVEN OISTRIBUTION OF X VALUES
OVER RANGE OF INTEGRATION.

EI=.05 § NPHWR={

EROF=((HI-EI)/(1e=EI)=1.)/ (1o=EI}**NPHR

C0 25 I=1,NF

gye=x(n)

IF (EVP.LT.EI) GO TO 25

EVP=EVP-EI § EVP=EVP*(1.+EROR*EVP*¥NPHR) +EI
25 X{I)=EVP

HIGHER VALUES WILL PLACE MORE X YALUES NEAR

PUNCH PRRAMETERS
26 HRITE (7,14)
WRITE (7,11)
HRITE (7,12)

ON CAROS

SU,U,s UL

ByB1,NPOL, (CI(D) ,AI‘I) ,I=1'NP°L’
NPy X (1) g X (NP}

I=0 % 1Ii1=%
90 READ (5,1) MNEY
CONT=,F.
95 IF (NEV-I1) 803,100,100

COMPUTE EXACT SYSTEM RESPONSE VARIAMNE
106 CALL VARU(SU,UL,U,SR2)
CALL STARAY(LO,LO?
IF {+NOT.CONT) GO TO 110
EROR=ER2(I1) ¢ NSKIP=1 § GO TO 111t
GUESS OF EIGENFUNCTION P (ALPHA)
NSKIP=2

GENERATE INITIAL
110 EROR=ER1(I1) $
CALL GUESSULID

111 HRITE (64101) I1,SUULULL(CIC(IHAT(N 4»I=1,NPOL)

EIGUGL96
£IGU3097
EIGUOD98
EIGUOG99
EIGUA100
EIGUO101
E€IGUa132
EIGU0103
EIGUI104
EIGUI10S
£IGUB106
EIGUC107
EIGUUL08
EIGUT109
EIGUG1L0
EIGUG1LY
EIGUG112
EIGUI113
EIGUI1L S
EIGUJI1LS
EIGUG116
EIGUGLLY7
EI6GUL11 8
EIGUL119
EIGUC120
EIGUO121L
EI6GUd122
EIGUO123
EIGUC124
EIGUB125
EIGUO126
EIGUO127
EIGU0L28
EIGUC129
EIGU0130
EIGUO131
EIGUO132
EIGUO133
EIGUO134
EIGUOL3S
EIGUC136
EIGU0137
EIGU0138
EIGUO139
EIGUG1G4 L
EIGUG141L
EIGUd 162
EIGUO143
EIGUC 144
EIGUOL6S
EIGUCL46
EIGUC147
EIGUO148
EIGU0149

101 FORPAT (1F1,SX,*BEGIN ITERATION FOR EIGENVALUE ANND EIGENFUNCTION NEIGUJ1S0
10e® 3125/ 9/7 9EX9s*TURBULENCE PARAMCETERSSE*5/ 56Xy *STDe BEVe =*3F64395X,EIGUE151
2*MTRS =%yFB8.355X%X,*SCALE LENGTH =%,3F9,34/9/+96Xs*VEHICLE PARAMETERSIEIGUG152

3% 4/ 912X 3 *COEFFICIENTS®* 326X *POLES®* 9/ (4 X92E1304y8Xy2E13e4)?
HRITE (64102) SR2

102 FORPAT (1HO,5X9*SYSTEM RESPONSE VARIANCE =%,E13.6,7y1H1)
J=1 ¢ EVP=EI=1.,€50 $ SEv=i. § GO TO 210

200 GALL FILL

EIGUE1S53
EIGU0154
EIGUOL55
EIGUO156
EIGU0157
EIGUO1S8
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EROR=ER2(I1}

IF (I.GTe0) EIGENFUNCTION MUST BE ORTHOGONAL TO ALL PREVIOUS FNS
218 IF (I.LE.C) GO TO 300
CALL ORTHOG(I)

COMPUTE NORMALIZATION FACTOR
30C CALL NORNF(F)

ESTIMATE EIGENVALUE

406G EI=EI*F

401 DEVP=ABS(ABS(1./EVP/F)=1.)
EVP=SEV/F
WRITE {(69405) JHyEVP,0EVP,EI

425 FORMAT (1K ,,5X,*ITERATION NO.*,I3,*, ESTIMATED EIGENVALUE IS*,
1E15e79*e (CEVP =%,3E1043,2X,%E] =¥,E10.3,%) *)

NOFVALIZ2E EIGENFUNCTION
500 CALL NORM(F)
IF ((JeLTe30)e0Re((J/S)*¥5.NEJ)) GO TO 520
WRITE (6451C) (X(JJ) 4P (JJ)3JI=14NP)
510 FORFAT (1H ,2E25.14)
WRITE (7,511) I1
511 FORFMAT (43X,1I2)
HRITE (7,707) (X{JJ)sP(JI) ,PCIJ) 3 JI=1,4NP)

IF OFEV IS SUFFICISNTLY SMALL, ACCEPT EIGENFUNCTION
520 IF ((DEVP.LELERCR) «ANDS(EILLELERI)) GO TO 700
IF ({JeGE«25)eAND, INSKIF,NEL1)) GO TO 28080

EIGENFUNCTICN NCT YET FOUND, CONTINUE ITERATION FROCESS
6G0 CALL ITERAT(EI,SEV)

J=J¢1

GO T0 210

ERRCR IS BELOR TOLERANCE, CHECK TO SEE THAT MAXe. NOe OF POINTS USED
700 IF (NSKIP.NE.1) GO TO 208
ACCEPT EIGENFUNCTION
I=I+1 § I1=1I#1
E(IV=EVP § FS=EYP**2/SR2 $ TFS=0.
DO 702 J=1,I
702 TFS=TFS+E(II**¥2 ¢ TFS=TFS/SR2
WRITE (7,70€) I,EVP
706 FORMAT (*EICENVALUE AND CONJUGATE EIGENFUNCTIONS NO*,I2,E£20.11)
WRITE (7,707) (X(J},P(J),P{J) 9J=LyNP)
707 FORNMAT (3E2S5.1%)
WRITE (64708) I ,EVP,FSyTI,TFS,y (X{J),PUJ} 3 J=1,NP)

EIGUO159
EIGUIL160
EIGUG161
EIGUI162
EIGUO163
EIGUOL6L
EIGUO165
EIGU3 166
EIGUG167
EIGUC168
EIGU0169
EIGUI170
EIGUE171
EIGUG 172
EIGUJ173
EIGUOL7 4
EIGUG175
EIGUC176
EIGU0177
EIGu0A7 8
EIGUC179
EIGUG130
EIGUO181
EIGUG182
EIGUO183
EIGUO184
EIGUB185
EIGUO186
EIGUO187
EIGUG188
EIGU0189
EIGUG190
EIGUG191
£16U0192
EIGU0193
EIGUC19%
EIGU0195
EIGUDL96
EIGU0197
EIGU0198
EIGUG199
EIGUG200
EIGUO201
EIGUOR02
EIG6U0203
EIGU0204
EIGUO205

708 FORMAT (1H1,SXy*EIGENVALUE NGo*,I2,* IS*,E14e792(/) 46Xy, *FRACTION OEIGUG206

2F RESFONSE VARIANGE DUE TO THIS EIGENVALUE IS*,F745,/96Xy

EIGUG207

I*FRECTICN OF RESPONSE VARIANCE DUE TO FIRST*,I2,.,* EIGENVALUES IS*,EIGUJI208

GFTaS9l 979X s *X Py 11Xy *EIGENFUNCTION™ /9 (6XyFBel9S5X9EL7 «10))
IF (I«GE.NEV) GO TO 880

CALL STCRA(I)

CONT=,F,

GO T0 110

800 HWRITE (65805) NEV,(J4E(J)yd=1,I)

EIGUJ 209
EIGUs216
£I6U0211
EIGUO212
EIGUG213
EIGUI214
EI6U3215

805 FORMAT (1F1,5X,*FIRST*,12,% EIGENVALUES ARES*,/,(10X%X,12,2X,E15.7))EIGUD216

FS=SR2* {1 .-TFS)
HRITE (6,810) FS,TFS

810 FORFAT (1HO,5X9s*REMAINING EIGENVALUES SQUARED SUM TO¥,E15.74/96X,

EIGUU2LY
£I6UL218
EI6U¢219

1*THE ABOVE EIGENVALUES ACCOUNT FOR*,F745,* OF THE RESFONSE VAR.*) EIGUOZ229

IF (FSelT.0.) GO TO 908

EIGUs 221
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FS=SQRT (FS) EIGUB 222
HRITE (6,812) FS EIGUB223

812 FORPAT (1H 45X,*LARGEST POSSIBLE REMAINING EIGENVALUE IS*,Ei14.7) EIGUO22%
900 STOF ¢ END EIGUQ 225
SUBROUTINE YARU(SU,UL,U,4S2) EIGUD226

i EIGUD227
A SUSROLTINE TO COMPUTE THE RESPONSE VARIANCE OF A LINEAR SYSTEM EIGUO228
SUBJECTED TO RAMNDOM INPUT WITH DRYDEN U~GUST SPECTRUM EIGU0229
EIGUL230

SU = TURBULENCE STANDARD BDEVIATION EIGU0231
UL = TURBULENCE SCALE LENGTH EIGUO232
U = VEHICLE MEAN TRUE AIRSPEED EIGU0233
Al = VEHICLE IMFULSE RESPONSE EXPONENTS (MUST HAVE POSITIVE REAL PARTIEIGUOZ23%
CI = VEHICLE IMPULSE RESPCNSE CONSTANTS EIGUO23S
IF CI CR AI IS COMPLEX, ONLY ONE OF EACH CONJUGATE PAIR IS TO BE USEDEIGU0236
EIGU0237

COMFLEX CIoAI4 AU AKeCJI4CKyC2,C34CH EIGUC238
CCMMON JCCNSTZ CI(S),ATI(5) 4 NPOL EIGUD239
LOGICAL RL1.RL2 EIGUOZ240
C=u/uL ¢ S2=0. EIGUO 241

00 20 K=1,NPOL EIGU0262
Cu=Ce § AK=AI(KY § CK=CI{K) EIGUO2643
RLA=AIMAG(AK) eEGeDee ANDQAIMAGICK) ¢EQe Qs EIGU024%4

S 00 10 J=1,NFOL EIGUG 265
Ci=C. $ AJ=AI(WJ) $& Cu=CItM) EIGUB24 6
RL2=AIMAGI(AJ) ¢EQeles ANDLAIMAGI(CJ) sEQe B EIGUD 247

6 C2=1,/7(C~2J) EIGUC 268
C2=C2* (1,7 (2J+AK)/ (AJ+C)=a5/C/ LAKEC)) EIGUB2649
C2=C2*CJ*CK EIGUO250
C3=C3+C2 EIGUB251

IF (RL2) GO TO 10 EIGUG252
AJ=CONJG(AJ) $ CJ=CONJGICJ) 3 PRL2=,Te & GO TO & EIGUN253

10 C4=(4+C3 EIGUG25 4
IF (RL1Y GO TO 20 EIGUA 255
AK=CONJG(AK) § CK=CONJGI(CK) § RLi=.T, ¢ GO TO S EIGUO256

20 S2=S2+REAL(CL) EIGU0257
S2=S2%2,%C*SU*+2 EIGUO258
RETURN $ ENO EIGU0259
SUBRCUTINE FILL EIGUG260
EIGUO261

THIS SUBROUTINE INTERPOLATES THE 21 POINT EIGENFUNCTION TO FORM THE EIGUDZH2
FIRST APPROXIMATION TO THE 41 POINT SIGENFUNCTION. EIGUC263
EIGUO264

COMMCON ZARRAYS/ X(45) 3P {450 913113 K9XP oG 141) 3y NPNSKIP EIGUE265
I1=NSKIP/2¢1 EIGUB266

DO 10 I=I1,NPy,NSKIP €IGUg267
Xe=x{1) $ K=I+1-1I1 EIGU0268
CALL COEF (K4P,C) EIGUD269

10 PLII=((CL4)*XPeC(3)I*XP+C(2))*XP+C (1) EIGUO27 0
NSKIP=NSKIP/2 EIGUO271
RETURN ¢ ENO EIGUC27 2
SUBROUTINE GUESS(I) EIGUO273
EIGU027&

THIS SUEBROUTINMNE GUESSES THE NEXT EIGENFUNCTION TO BE THE EIGUR27S
DERIVATIVE CF THE PROVIOUS RESULT OR X*EXP(-3.*X) FOR THE FIRST. EIGUD276
EIGU0277

CCMMON ZARRAYSZ XU45) 3P (45) 9J9XJ9KsDX9DP Q4L ) y NPy NSKIP EIGUO278

IF INSKIP.LE.1) GO TO 70 EIGU0R279

IF (1.GT.1) GO TO S0 EIGUO280

00 10 J=1,NF,NSKIP EIGUG2812
XJ=X¢J) EIGUG 282

10 PUII=XJI*EXP(=3,¥XJ) EIGUD283
RETURN EIGUG284
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. 50 K=NSKIP+i
DO €0 J=K,NF,NSKIP
DP=E(J) =P(J=1) ¢ DX=X{J)=XtJ=1) § XJ=XCJ)
XI=XI*EXP (=Jo* X))

60 P(JI=XJ*0P/OX

RETURN

c

70. . WRITE (6471) NSKIP

71 FORMAT {1F 4SX9*NSKIP =%,110+* NOT ALLOWED IN GUESS*)

STOP £ END
SUBROUTINE NORNF{F)

c
C COMPUTES NORM OF THE FUNCTION P(X)

C THE NOR® IS TME ESTIMATED EIGENVALUE, THE INVERSE OF THE NORM IS THE

C NORVMALIZATICN FACTOR
<

COMMON ZARRAYS/ XC45) 3P (45) yC(L) gFLgNPLyJy T3 X1 4X2,I1,CII,IJyKyCK,y

1X129X225Jd9C(27) yNPyNSKIP, NPOLY
Fi=0. € NPLi=NPOLY®#L § J=NP~-1
00 60 I=1,J.NSKIP
F = 0.
CALL COEF(I,P,C}
12 Xi=X{(I) g  X2=X(I+NSKIF)
IF (X24GTX{INP)) X2=X(NF)
00 40 II=1,ANPOLY

CII=CI(II) § 1Iy=II+#1 $ K=II+IJ=-1 $ CK=FLOATI(X)

X12=X1%%K § X22=X2%**K
BO &0 JJI=IJ,NP1
F = FFCIIYC(JJ)®(X22-X12}/CK
CK={Ke#l. § Xi2=X12%*X4
40 X22=X22%*X2Z

F=F®2, ¢ x12=xi®%2 § x22=x2%*2 § CK=1.

D0 S50 II=1,NPi

F=F #(X2-X1)*(CLIT) **¥2)/CK § CK=CK#2,
S0 X1=X1*X12
60 Fi=FisF

F=SERT(1./F1)

RETURN

c
C NORVMALIZE EIGENFUNCTION P
ENTRY NCRM
00 ig¢ I=1,MP,NSKIP
10C P(I)=F(I)*F
RETUREN ¢ END
SUBROUTINE CRTHOG(I)

c
C A SUBROUTINE TO ORTHOGONALIZE P(X) WITH RESPECT TO THE FIRST I EGNFNS
c
CONMON ZARRAYS/ X{45),P(45) 3QL45) yNPyNSKIPyNPOLYLEFP(4545),C(4),
10¢4)
NP1 = NPOLY#1L
B0 S5C J=1,1

00 180 JJ=31,NP,NSKIP
10 CUJINI=EFPLII, )

K=NF=1 €& F=0.

00 40 JJ=1,K.NSKIP

CALL CCEF(JJ4P,4C)

CALL COEF (JJ+Q,D)

$ x2=XxX2*x22

X1=X0JJ) $ II=JJeNSKIF $ IF (II.GT.NP) II=NP $ X2=X(II)

DO 40 II=3.MP1
X12=x1**II ¢ X22=Xx2+¢*II § CII=C(ID)
CO 40 KK=1,NP%

$ CL=FLOAT(ID)

"EIGUD28S
EIGUD 286
EIGUO287
EIGUG238
EIGUQ 289
EXIGUQ 290
EIGUG291
EIGUG292
EIGU0293
EIGUD29%
EIGUO295
EIGU0296
EIGUQ297
EIGU0298
EIGUD299
EIGUG3a0
EISUG301
EIGUO302
£16U0303
EIGUG30%
£IGUB305
EIGUJ306
EIGU0307
EIGU308
EIGUG309
EIGUO3LD
EIGUO311
EIGUE3L2
EIGUG 313
EIGUG314
EIGUL3LS
EIGUO3i6
EIGUG3LY
EIGUG318
£IGUA319
EIGUS320
EIGU0321
£I6U0322
EIGU0323
EIGUG324
E£I6U0325
EIGUG326
EIGUE327
EIGUO328
EIGUE329
EIGUG33D
EIGUD331
EIGUD332
EIGLU0333
EIGUE334
€IGUD33S
EIGUO336
EIGUD337
EIGUC338
EIGUC339
EIGUO34O
EIGUG34L
EIGUG3L2
EIGUO343
EIGUG 34
EIGUD345
EIGUO3LE
EIGUO347
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F=FeCII*D(KK)*(X22~X12)/CL § CL=CL#1., § X12=X12%X1

40 X22 = X22*X2
00 S0 JJy=1,NP,NSKIP
‘50 PLJJI=P(JJ) ~F*QLII)
' RETURN 8§ END
FUNCTION SUN(I,J)

c
C FORMS PRODUCT (J=T+1)%(J=I42) easnseld)
c
: N=1
IF(I) 20,20,10
10 K=J~I*1
. DO 15 L=K,J
- 15 N=N*L
20 SUM=FLOAT(N)
- RETURN £ END
SUBROUTINE COEF(IyA,C)
A SUBROUTINE 70 FILL G ARRAY WITH THE COEFFICIENTS CF THE
POLYNOMIAL REFRESENTING A(X) SETHEEN X{I) AND X(I+NSKIP), NPOLY IS
THE CRDER OF THE POLYNOMIAL
POLYNOMIAL IS CE1) + C(23%X + C(3IFX**2 © C(4) ¥X*¥*3

OO0 .

DIMENSICN A(1),C(1)

CCMFON ZARRAYS/ X{(45),PL45),Q45) 3NPy NSKIPyNPOLY

DATA NPCLY/ Y/ \
IF (I.GT,ANSKIP) GO TO 10 3
N=4 ¢ GC T0 30

10 IF t(I.LE.NP=2%NSKIP) GO TO 28
N=NP=3*NSKIF ¢ GO TO 30

20 N=I-NSKIP

30 FL=AIN) ¢ X1=XI(N) § N=N#NSKIP $ F2=A4N)
N=N#NSKIP & F3=A(N) % X3=XIN)
N=N#NSKIP § Fu4=A(N) & X&=XIN)
FISFL/ZIX1=X2)/(X1=X3} 7 (X1i=X4}
F2=F2/(X2=X1)/ (X2=X3)/ €X2=X4L)
F3=F3/ IXI=X1)/{(X3=X2} /7 {XI=X4)
FLU=FL/O(X4=~X1)/ (X4=X2)/ (Xh~X3)
Cli)=FL4FZ+FI4FL

s

X2=X{N)

C(3Y==F1® (XZ+X3+Xt)=F2% (X1 #XT#+Xl) =F3¥ (X1 4X2+Xh) =F4* (X1+X24¢X 3}

CU2IFL* IX2% (XTI + XL ) #XI*XL) +F2¥ (XL (XT#XL) + AT *ALIFFIFAXLH A2 #Xb) ¢

IX2¥FXL)+FLPIXL*(X2+X3) X2*X3)

Cl1)==F1%#X2¥X3*X4~F2*X1*X3*XL=FI*XL*X2¥ X =F4PXL1*X2*X3

RETURN € END
SUBROUYINE CIFC
C INTEGRATE CGHMPLEX TERMS OF TRANSFER FUNCTION
c
EQUIVALENCE (E9ERD 5 (XE4XERD) 3 (XE19XELR) 4 (01 ,01R)
CCMMON /DIF/ X,EyN,01
COMFLEX E4XEysXE1,08
Ni=Kk¢1 ¢ C1=0.
IF (N) 70.,10,20
c
C CONSTANT TERM OF POLYNOMIAL
10 Di=1. t GC TO 30
c
C POWER TERM CF PCLYNOMIAL
2¢ IF (XoNE.0.) GO TO 25
N1=(=1./E)¥*NESUM(N,N)
GO0 TO 3¢
25 XN=Xx**N
XE1=X*E § XE=1. $ Si=1, $ S2=FLOAT(N)
D0 28 I=1,N1

D1=XN/XE*S14¢D1 $ XE=XE*XEL §$ S1=51%S2 ¢ S2=52-i1,

EIGUO3LS
EIGUO349
£I6U0350
EIGUO35L
EIGUg352
EIGUG353
EIGUO3S4%
EIGU0355
EIGUC356
EIGUB357
EIGUA358
EIGUD359

EIGUG360

EIGUG 3561
EIGUR362
EIGUO363
EIGUB364
EIGUD3BS
EIGUE366
EIGUO367
EI6U0368
EIGUO369
EIGU0370
EIGUO371
EIGUD372
EIGU0373
EIGUE374
EIGU0375
EIGUO376
EIGUO377
EIGUD378
EIGUD379
EIGUE380
EIGU0381
EIGUO382
EIGUO383
EIGUC384
EIGUO38S
EIGUE386
EIGU0387
EIGUD388
EIGU0389
EIGUC 390
EIGUD391
EIGUL392
EIGU0393
EIGUE 394
EIGUB395
EIGUO396
EIGU0397
EIGUO393
EIGUA399
EIGUI400
EIGUO401
EIGUO&D2
EIGUD®03
EIGUCLOG
EIGUC4OS
EIGUO406
EIGUO4G?
EIGUO4D 8
EIGUC40 9
EIGUO4L0



28
38
70

[ Xv]

iio

Oa o0

120

125

128
130
17¢

202

XN==XN
D1=C1*CEXFIE*X)/E
RETURN

INTEGRATYE REAL TERMS OF TRANSFER FUNCTION

ENTRY DIFR
Ni=N¢1 ¢ (01=0.
IF (N) 17C.110,120

CONSTANTY TERM OF POLYNOMIAL

DiR=1. ¢ GO TO 130

POWER TERM OF PCLYNCMNIAL

IF (XeNEa0s) GO TO 125
D1R= (=1, /ER) **N¥SUNIN,N)
G0 To 130

XN=X#*N

XELR=X*ER ¢ XER=i. $ Si=i. $ S2=FLOATIN)

00 128 I=14M

DiR=XN/XER*S1+D1R § XER=XER*XELR ¢ S1=51*S2 § S2=S2-1.

XN==XN
D1=CHPLX(DLR*EXPI(ER*X)/ER,0.,0)
RETURN & END

SUBROQUTINE NTGRAL(V,ALPHA)

C
C INTEGRATES P(X)*HIALPHA,X)
c

C

COMMON /ARRAYS/ XU45),P(45) 9QC45) yNPyNSKIP,NPOLY,EFP(225) , C(&)

COMMON /CCNST/ CI(5),AI(S),NPOL,B,B1
GCMYMON /JDIF/ X1,E.NPOM,01C

OIMENSICN DiS(4),02S(4)

BIMENSICN D1A(45,4),01CA(45,4,2),CAL180)
COMPLEX Di1CA

COMPLEX AI,CI,EyC1,024V1,V2,E2,02S,01C
LOGICAL RL

EQUIVALENCE (£,ER),(D1,01C)

V=0, $§ E1=EXP(=3*ALPHA)

C CYCLE THROUGH PCLES OF TRANSFER FUNCTION

OO0

i¢

00 190 IPCL=1,NPOL
C1=CI(IFOL)/(AI(IPOL)~2.%B)
E2=CEXP{(~ALFHA*(AI{IPOL)=8))
Vi=0. $ Vv2=0,

CYCLE THROUGH X INTERVALS

00 10 NX=41,MPO1L
DISINXI=01A(1,NX)
B2SINX)=D1CAC(L,NX, IPOL)
I=NSKIP#1 § NXI=1

00 80 NX=I,AP,NSKIP
X1=X(NX)

C
C CYCLE THROUGH TERMS OF POLYNOMIAL

20

25

40
59

D0 £0 NPO=1,NPO1L

C1=01A(NX,NPO) ¢ E=01~DiSU(NPO} $ VI=E1*E
01S(NPO)=C1

IF (X1=ALPHZ) 214214+%0

01C=D1CAINX4NPO,IPOL)
Vi=y1-E£1*(D1C~02S INPOY)

02S(NPO)=01C

GO TO 59

Vi=V1-E2%E

V2=V1*CA(NXII+V2

EIGUOKLL
EIGUl412
EIGUa413
EIGUOG1&
EIGUu415
EIGUG416
EIGUu417
EIGUIHLS
EIGUGLLY
EIGUUI420
EIGUO421
EIGUSL22
EIGUDH23
EIGUD42G
EIGUO42S
EIGUO426
EIGUC427
EIGUQ42S
EIGUB429
EIGUG4L3D
EIGUD43L
EIGUO 432
EIGUCL33
EIGUC43 .
EIGUOL3S5
EIGUD436
EIGUCL37
EIGUDL3 8
EIGUOL3Y
EIGUOLY O
EIGUOLGLY
EIGUO 442
EIGUO4E3
EIGUGA44
EIGUO4LS
EIGUB446
EIGUOLLT7
EIGUG LGS
EIGUOLYL Y
EIGUO450
EIGUILS L
EIGUQ452
EIGUIL53
EIGUOLS4
EIGU0455
EIGUILS6
EIGUOLST
EIGUD45 3
EIGUDI459
€I6U0460
EIGUO46L
EIGUG462
EIGUOLES
EIGUI46YL
EIGUOLES
EIGUC466
EIGUO467
EIGUG4ES
EIGUO46 9
EIGUO47O
EIGUus71
EIGUOLT7 2
EIGUOLZ 3
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60
80

203

NXI=NXI¢t
CONTINUE

. V2=y2¥%C1

100

IF ((AIRAGIC1) EQel4) cAND. (AIMAGIE2Y, EQ.0.)) GO TO 140
V2=2.¥REAL(V2)

v=vay2

v=v*g1

GO TO 5090

ENTRY STARAY
NPO1=NPOLY+i1 ¢ ER=-B
00 20808 NX=1.NP

© X1=XAINX)

200

250
3C0

00 200 NPO=1,NPOL

NPOM=NPO-1

CALL OIFR

BLA (NX,KNPC)=D1

00 300 IPCL=1,NPOL

E=8-AT(IPCL) $§ RL=AIMAGIE).EQ.0.

00 300 NPO=1,NPO4

NPOM=NPO~-1

DO 300 NX=1,NP '
X1=X{NX} § IF(RL) GO TO 250 § CALL OIFC ¢ GO TO 300
CALL DIFR

BL1CA(NXsNFO,IPOL)=D1C

GO To 500

C GENERATE TABLE OF POLYNOMIAL COEFFICIENTS

350

380
400

50¢C

ENTRY GENCOE

NPO=0

0O &00 NXI=1,NP,NSKIP
IF (NXI-NP) 350,400,400
CALL COEF(NXI,P,C)

DG 380 NPQ1=1i,4
NPO=NPO#1

CA (NPC) =C (NPO1)
CONTINUE

NPO1=NPCLY#+1

RETURN ¢ ENO
SUBROUTINE ITERAT(E,SEV)

c
C A SUBROUTINE T0 ITERATE THE EIGENFUNCTION P{X)

c

30
50

60

70
84
81
98
100

COMMON ZARRAYS/ X(45),P(45) ,Q(45) NPy NSKIP,NPOLY
COMFON /EVAL/Z EVP

CALL GENCOE (QyX)

Q{1)=0., $ E=0. § TI1=NSKIP+#1

80 50 I=I1,MP,NSKXIP

QI=P(I) *EVP

CALL NTGRALIQC(I),X(IN)
E=Z+{ABS(QI)-A3S{Q(I)))*>2

E=SCRT(EI/FLOAT(NP) & S1=S2=0,

00 60 I=1;NP,NSKIP

S1=S1+ABS(P(I)+Q(I)) & S2=S2¢ABSI(P(I})~-Q(I})
PLIN=0(I)

IF tS1-S2) 70,30,90

SEV==-1s, § GO TO 100

WRITE (6,81) ¢ sSTOP

FORMAT (1H ,5X,*ZERO EIGFN. COMPUTED BY ITERAT*)
SEV=1.

RETURN $ END

SUBROUTINE STORLI)

EIGUOGT &
EIGUO4T S
EIGU0476
EIGUQ4T7
EIGUOLZS
EIGUOBLT S
£IGUD4B0
EIGUOLSL
EIGUO482
EIGUO4S3
EIGUOLSB
EIGUO4SS
EIGUN486
EIGUOLE?Z
EIGUO48S
EIGUO48Y
EIGUD49Q
EIGUO49L
EIGUS 492
EIGU0493
EIGUO494
EIGU04IS
EIGUD496
E£16U0497
EIGU0498
EIGUC499
EIGUG500
EIGUGSDL
EIGUG502
EIGUOSO 3
EIGUSS06
EIGUOS50S
EIGUOSEH
EIGUOSO7
EIGUO508
EIGUESO 9
EIGUISLO
EIGUOS11
EIGUO5L2
EIGUGS13
EIGUGS514
EIGUAS51S
EIGU0516
EIGUG517
EIGUL518
EIGUISLY
EIGUG520
EIGUCS521
EIGUBS522
EIGUO523
EIGUC524
EIGUE52S
EIGUES26
ETGUDS27
EIGUBS528
EIGUOS29
EIGUOS3D
EIGUE5S3L
EIGU3532
EIGUG533
EIGUCS34
EIGUBS3S
EIGUO536
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C : : . EIGUOS37
- STORES JTH EIGENFUNCTION _ : EIGUDS3S
c i+ ' EIGUO539
- COMMON ZARRAYS/ xtus»,r«uS),J,oun:uu),np,nsnIP.NPoLv,EFP«us,5) . EIGUBS4D

DO 10 J=1,NP _ EIGUGSWL

10 EFP(JI,II=PLJ) ° R EIGUGSe2
RETURN & END : EIGUOS43

A3z Ey RN 2 e Ry Ny Ny R Ny e Ay Ny Ay e E e A Ry Ne N R N N o N N N e N Ny N e Ne N e Ny N v N e N e e e N N x X2 X1 X7 R R X2 N3]

PROGRAM EIGVH(INPUT,0UTPUT ,PUNCH, TAPES=INPUT,TAPEG=0UTPUT,TAPE7= EIGVH(OOD
1PUNCH) EIGVHEO0L
EIGVHOD 2

THIS IS A PROGRAM TO GENERATE EIGENVALUES AND EIGENFUNCTIONS FOR THE EIGVHGO3
NON=-GAUSSTAMN TURBULENCE MODEL RESPONSE CALCULATIONS: THE EIGEN~- EIGYWOO &
FUNCTIOMNS ARE REPRESENTED BY PIECEWISE POLYNOMIAL FUNCTIONS OVER EIGVHOOS
THE RANCGCE OF INTEGRATION, AND ALL INTEGRATIONS ARE EXACT WITHIN EIGYHODG6
THIS APFROXIMEATION, EIGVHOO7
THIS PRCGRAM IS FOR VERTICAL AND LATERAL GUSTS ONLY EIGVHO00S8
PCALPHA) yQ(BETA) ARE EIGENFUNCTION ARRAYS FOR ITERATIVE PROCESS EIGVWIO09
EFP,EFQ ARE ARRAYS FOR STORAGE OF EIGENFUNCTIONS EIGVHO10
ER1 IS ERROR TOLERANCE ARRAY FOR EIGENVALUES USING 21 PCINT EIGFN APP.EIGVWOL11
ER2 IS ERROR TOLERANCE ARRAY FOR EIGENVALUES USING 431 POINT EIGFN APP.EIGYWO012

X(I) IS APRAY CCNTAINING ABCISSAE OF EIGENFUNCTIONS EIGVHOL3
NP IS THE MAXIMUM NUMBER OF ABCISSAE POINTS FOR EIGENFUNCTIONS, EIGVHO1G
CURRENTLY SET TO %1, VALUES +GT. 45 REQUIRE REDIMENSIONING, NP MUSTEIGVWO1S

BE AN ODOD MUMBER, EIGVHOL6

E IS THE EIGENVALUE ARRAY EIGYHOL?7
HI IS THE UPPER LIMIT OF INTEGRATION EIGVHOL S
NPOL IS THE NUMBER OF POLES IN THE LINEAR SYSTEM TRANSFER FUNCTION EIGVWEL9
SHCULD CCMFLEX POLES OCCUR, ONLY ONE OF EACH CONJUGATE PAIR EIGVWG20

IS 70 BE USEC EIGVWG21

EIGVYWO022

INPUT DATAR EIGVWD23

RESTRT (L1) LOGICAL INDICATOR FOR RESTART OPTION. IF RESTRY IS EIGVM02&
TRUE DATA DECK PUNCHED BY PREVIOUS RUN CAN BE USED EIGVHO25

TO RESTART COMPUTAT ION. EIGVHO26

EIGVHD27

IF RESTRT = LFALSE. DATA DECK IS AS FOLLOWS EIGVYND28
NPOL (I1) ANUMIER OF SYSTEM POLES TO BE REAO., IF COMPLEX POLES EIGVHO29
CCCURs ONLY ONE OF EACH CONJUGATE PAIR IS USED. EIGVHO30

(CI(IYAIt(I),I=t,NPOL) (4E20410) NUMERATORS AND POLES RESPECTIVELYEIGVWG31
CF SYSTEM TRANSFER FUNCTION FARTIAL FRACTION EXPANSION EIGYWOD3Z2
IN COMPLEX FORM. IF COMPLEX POLES OCCUR, ONLY ONE OF EIGVHC33
THE PAPTIAL FRACTION COMPLEX CONJUGATE TERMS IS USED. EIGVWO34
REAL PART OF POLES MUST 8€ NEGATIVE FOR STABLE SYSTEM, EIGVHG3S

SHyUpWL (3F10.5) TURSBULENCE VELOCITY STANDARD GEYIATION, EIGVHD3®
VEHICLE MEAN TRUE AIRSPEED, AND TURBULENCE GUST EIGVHB3?7

VELOCITY SCALE LENGTH, EIGVHO3 8

NEV (I1) .TCTAI NUMBER OF EIGENVALUES/EIGENFUNCTIONS REQUIRED. EIGVWO39
NEV MUST BE LESS THAN OR EQUAL TO S. EIGVH(GWD

EIGVHUGL

IF RESTRT = ,TRUE. DATA DECK IS AS FOLLONWS EIGVWDL42
(ALL BUT LAST THREE CARDS (EOR,CONT,NEV) ARE PUNCHED BY EIGVHO43
PREVIOUS RUN) EIGVHO &4
SWHyUsWL (FORMAT 17) SEE OESCRIPTION ABOVE. EIGVHOGS
ByBleNPCLy (CI(I),AI(I),1I=14NPOL) (FORMAT b) EIGVHOL®
NP;LOyHI (FCRMAT 7) EIGYWOLT
JsEMN s IXHUKISEFFPIKyJ) EFQIK,J) 3K=1,NP) (FORMAT 13) EIGVHOW 8
€END OF RECORD INDICATES END OF EIGENVALUE/EIGENFUNCTION DATA, EIGVHO4I

CONT {L1) LOGICAL VARIABLE, IF TRUE IT IS ASSUMED THAT ITERATION EIGVWOSO
OF THE LAST EIGENSOLUTION IS TO CONTINUE, IF FALSE IT IS ASSUMED EIGVHOS51
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c THAT THE LAST EIGENSOLUTION IS ACCURATE AND ITERATION OF THE EIGVNE52
c NEXT SOLUTICN IS TO BEGIN. EIGVHOS 3
Cc NEV (I1) TOTAL NUMBER OF EIGENVALUES/EIGENFUNCTIONS SOUGHT (LLE.S5)EIGVHGS 4
c . EIGVHASS
DIMENSICN E(5).ER1(5),ER2(5) EIGVHOS56
COMKON ZARRAYS/Z XU{45)4PU45),Q(45) DUN(45) 4NPNSKIP,NPOLY,USEP, EIGVHOS7
L1EFPI45,5) yEFQ(645,45),C(6),Dt4) EIGVHES S
COMMON FCCNST/ CI(S5),AIC5) ,NPOL,B,yBL EIGVHESIS
CCHMFMON /EVAL/ EVPLEVQ EIGVNG60
COMPLEX CIo,AI § REAL LO §$ LOGICAL RESTRT,USEP,CONT EIGVHLBL

DATA ERI/1.E~3/ EIGVHOB 2

DATE ER1’ ERZ,NP/’--E"}, 1. E-lo,S 05‘91105‘3’1 nE'Z’i.E’S,l.E'S’ i lE"O' EIGVWE63

18 eE=lylsE=3 417 . EIGVHO64

DATA (X(I)yI=19410/009e0190029e039e0859¢069¢08501071,5.1341, EIGVHOBS
1016129e1882102153902824434¢26903029659¢32359035069¢37765e4047, EIGVHE66
200318504588 9e48599e51299 0500090567190 5941506212906482,46753, EIGVHOE?
Je702Uye 7294507565 4e78355e8106,5e83765080647,5+831L8,043188,43U59, EIGYW06 S
4.972951./ EIGVHO69

c EIGVW(E7 0
1 FORPAT (I1) EIGVHIZ L

2 FORMAT t4E20.10) EIGVHO72

3 FORMAT (3F10.5} vy EIGVHO7 3

4 FCRMAT (I10) - EIGVHAT L

S FORMAT (L1} ' EIGVWO7S

6 FORFAT (3X9E20412¢45%X9E20612911X9I24/79(4E20.12)) EIGVHNDO76

7 FORNAT (LX,13,27X,2E203.11) EIGVHO7?

8 FORMAT (B8F10.5) EIGVHO7 8

11 FORMAT (*E =%,E20.12,1%Xy¥B1 =%,F20.12,5X,*NPOL =¥%,12,/,(4E20.12)) EIGVHO79

12 FORMAT (*NP =%,13,5X4s*RANGE OF INTEGRATION =%,2E20.11) EIGVW08O

13 FORMAT 143X512,E2041157513E25414)) EIGVHUBL

16 FORMAT (*SH =*,E15,791Xy*MTAS =S¥yEL15. 791Xy *HL =%,E515,7) EIGVHOB2

17 FORYAT (LX9E15e797X9EL15e795X9E15.7) EIGVHWUS83

c EIGVHD8 G
REAC (5,5) RESTRT EIGVHE8S
IF(.NOT.RESTRT) GO TO 20 EIGVHAB6

c EIGVHOS87
C RESTARY 1S TRUE, READ DATA FROM PREVIOUS RUN EIGVHOSES
RZAT (S5417) SHyUsHWL EIGVHGS89

READ (5,6) B,B1,NPOL,(CI(I),LAT(I),I=1,HPOL) EIGVHO90

READ (5,7) NPoLGyHI EIGVWI91L

DO 15 Ii1=1,¢€ EIGVHO9R2

READ €5,13) JyEtJ)y (XUIKISEFPI{K,J) sEFQ(KyJ) yK=1,NP) EIGVHE93

IF (EOF,5) 16,15 EIGVNG94

15 CCNTINUE EIGVHOIS

GO TO 810 EIGVHO96

16 REAT (5,5} GONT EIGVHE97
REAC (5,1} NEV EIGVHOI8
I=I1-4 EIGVYWH0I9

00 18 K=1,NP EIGVH1O0O
PIKI=EFP{K,1) EIGVH1D L

IF (+4NOT.GONT) GO TO 18 EIGVHiG2
QIKI=EFQ(Ky ) EIGVHIB3

18 CONTINUE EIGVH10 4

IF (+NOT.CONT) GO TO 95 EIGVH105
Ii=11-1 ¢ I=11-1 EIGVH106

GO 10 95 EIGVW1D7

c EIGVYW10 8
C RESTART IS FALSE, READ DATA OEFINING NEW PROBLEM, EIGVW1O9
20 READ (5,1) nPOL EIGVH110

IF (NPOL) 900,900,21 EIGVHL111

21 READ (5,2) (CIC(I),AItI)I=1,NPOL) EIGVH112

C CHANGE SIGN OF EXPONENT SINCE ALL SUBROUTINES EXPECT NEGATIVE OF EIGVHN113

C TRUE EXFONENT. EIGVW1l &L
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00 22 I=1,NPOL
22 ATItI)=<~AT(I])
READ (5,3) SHyU,HL
B=U/2.7KL § HI=20./8 '$ Bi=SH*U/HL*SORTI2,)
IF (HI.LEeLle} GO TQ 26

SCALE X VALUES TO GCOVER RANGE OF INTEGRATION, USE EI,EVP,EVQ FOR
TEMPORARY STORAGE.
EI IS LCHER LIMIT OF POWER LAW SCALING.
NPWR IS POHER OF SCALING, HIGHER VALUES WILL PLACE PFORE X VALUES NEAR
ORIGINe LOW YALUES WILL PROVIDE MORE EVEN DISTRIBUTION OF X VALUES
OVER RANGE CF INTEGRATION,.

EI=«05 $ APHR=1

EVQ={(HI~EI}/(1e=EI) =14}/ 1{1.~EI) **NPHR

D0 25 I=1,NF

EVP=X{I)

IF (EVP.LTL.EI) GO TO 25

EVP=EVP=-EI § EVP=EVP*(1,+EVQA*EVP**NPHR)*EI
25 X{I)=EVP

PUNCH PARAMETERS ON CARDS

26 RRITE (7914) 'SHaUyHL
WRITE (7511) B,B81,NPOLy (CIC(INHAT(I) »I=1,NPOL)
HRITE (75 12) NPX{1) X (NP)
I=s0 ¢ 1Ii=1

90 READ (5,1) KEV
CONT=,F,

95 IF (INEV-I1) 800,100,100

COMPUTE EXACT SYSTEM RESPONSE VARIANCE
100 CALL VARW(SH,WL,U,SR2)
CALL STARAY(LO,LO)
IF («NOT.GONT) GO TO 110
EROR=ER2(I1) ¢ NSKIP=1 § USEP=.Te ¢ GO TO 111

GENERATE INITIAL GUESS OF EIGENFUNCTION P (ALPHA)
110 EROR=FR1{I1) ¢ NSKIP=2 § USEP=.T,.
CALL GUESS(I1)

111 WRITE (6,101) I1,SHyUsHL,(CI(JN) ,AI(D) »J=1,NPOL)

EIGVUHLLS
EIGYN116
EIGVH1LT
EIGVN11 8
EIGYH119
EIGVH120
EIGVHI21
EIGYH122
EIGVH1Z23
EIGVH1Z2 S
EIGVH1Z2S
EIGVH126
EIGVW127
EIGVWL28
EIGVWiZ29
EIGVH130
EIGVW131
EIGVH132
EIGVH133
EIGVH13 L
EIGVW135
EIGVW136
EIGVWL37
EIGVW138
EIGVH139
EIGVH140
EIGVH1G1
EIGVWLiL2
EIGYW143
EIGVWiG4
EIGVH14LS
EIGVW146
EIGVW14LT
EIGVW1LS
EIGVW149
EIGVWiSO
EIGVW151
EIGVHi52
EIGVW153
EIGVW15 4

101 FORMAT (1H1,5X,*BEGIN ITERATION FOR EIGENVALUE AND EIGENFUNCTION NEIGVHW15S
10.% 312979/ 1€EXy*TURBULENCE FPARAMETERSE*3/ 46Xy ¥STDe DEVe =*,F643 55X, EIGVHNLSE
2%MTAS =%, FBe34y5Xy*SCALE LENGTH =*,F9.34/9/96Xy*VEHRICLE PARAMETERSSIEIGVW1S?

3%,/ 912Xy *COEFFICIENTS® 3y 26X 9 *POLES* 3/ y (4X52E130498X42E13ek4))
HRITE (64102) SR2
102 FORMAT (1HO 45Xy *SYSTEM RESPONSE VARIANCE =%,E13.65/,1H0)
J=1 § EVP=EVQ=EI=DEVQ=1.E5C ¢ GO TO 210

200 CALL FILL
EROR=ER2(IY)

IF (I.GT.0) EIGENFUNCTION MUST BE ORTHOGONAL TO ALL PREVIOUS FNS
210 IF (I.LE.0) 60 TO 300
CALL ORTHCG(D)

COMPUTE NCRMALIZ2ATION FACTOR
300 CALL NORMF(F)

ESTIMATE EIGENVALUE

400 EI=EI*F
IF({USEP) 401,410

401 DEVP=ABS(1./EVP/F=1,}
EVP=1,.,/F

EIGVN158
EIGVW159
EIGVH16L
EIGVH161
EIGVH162
EIGVH163
EIGVWiG 4
EIGVW1ES
EIGVH166
EIGVYNLET
EIGVW1ib 8
EIGVH169
EIGVW17 0
EIGVW171
EIGVHIT 2
EIGVH17 3
EIGVHiT &
EIGVW17S
EIGVH1T76
EIGVH1T7
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WRITE (65405) J,EVP,DEVF,EI
405 FORYAT (1H +5Xs*ITERATION NO.*,I3,%, ESTIMATED P EIGENVALUE IS*,

1E1SeTy*e (CEVP =% 351043 32Xs*ET =¥,E10,34%)%)

GO TO 5980 I
410 CEVG= ABS{1./EVQ/F-1,)

EVQ=1./F

HRITE (E,415) JL,EVQ,DEVAQ,EI
415 FORYAT (LH ,SX,*ITERATICN NGO,*,I3,*%, ESTIMATED Q EIGENVALUE IS*,

1E15.75%, (OEVQ =%,3E5104392Xs*ET =*3E10.35%)%)

NORMALIZE EIGENFUNGTION
500 CALL NORM(F)
IF ((JeLT+3C140Ra((I/5)*5,NELJ}) GO TO 520
HRITE (€5510) (X{(JJ),P(JI)»Q(JI)yJII=1,NP)
510 FORMAT (1H +3E25.14)
HRITE (7,511) It
511 FORFMAY (43X,12)
HRITE (75707) (X(JJ),P LIS ,QTI0)9JJ=1,NP)}

IF CEVY IS SUFFICIENTLY SMALLs ACCEPT EIGENFUNCTION
52C IF C(DEVP.LE.ERCR) +AND. (DEVQ.LEL.EROR) « AND& (EI+LELERI}) GO TO 700
IF ((JeGEe25)4 ANDe {NSKIP.NEs1)) GO TO 200 y
EIGENFUNCTICN NCT YET FOUND, GONTINUE ITERATION PROCESS
600 CALL ITERAT(EI)
J=Jat
G0 TO 2190

ERRCR IS BELOK TOLERANCE, CHECK TQ SEE THAT MAX. NO. OF POINIS USED
70C IF (NSKIP.NE.1) GO TO 200
ACCEPT EIGENFUNCTIONS
I=I+1 ¢ TI1=I#1
DEVP=ABS(EVP-EVQ) $ DEVQ=(EVP+EVQI/2. & OEVP=DEVP/DEVQ
E(IV=DEVQ § FS=DEVQ**2/SR2 § TFS=0.
DO 702 J=1,1
702 TFS=TFS+E(JI**2 $ TFS=TFS/SR2
WRITE (7,706) I,DEVQ
706 FORMAT (®EICENVALUE AND CONJUGATE EIGENFUNCTIONS NO+*,12,E20.11)
WRITE (7,707) (X(J)4PUJ)»C(S) 53 I=14NP)
707 FGRMAT (3E25.1%)

EIGVHL1T 8
EIGVH17 S
EIGVHLSEA
EIGYH18L
EIGVH182
EIGVH183
EIGVH184
EIGYNLSS
EIGVW186
EIGVH187
EIGVHLIAS
EIGVH189

,EIGVH190
EIGVH191

EIGVH192
EIGVH193
EIGVH194
EIGVW19S
EIGVW196
EIGVHLI7
EIGVYH198
EIGVH199
EIGVW200
EIGVH201
EIGVH202
EIGVHW203
EIGVHZO &
EIGVH205
EIGVH206
EIGVH207
EIGVW208
EIGVH209
EIGYN210
EIGVHZ2LY
EIGVW212
EIGVHZ213
EIGVH2L Y4
EIGVH215
EIGVH216
EIGVW217

WRITE (65708) ISsDEVAIEVP,EVQyDEVPsFS,IsTFS, (X(J)sPLU) QI J=14,NPIEIGVH2L B
708 FORMAT (1H1 4SXs*EIGENVALUS NOG*9I2,% IS*9yE14.7 9/ 96X s*EVP =¥ ,E14,7,EIGVHZ19
1% EVD =*,E14.7,* RELATIVE DIFFERENCE =%,E10.3,/,/96X,*FRACTION OEIGVH220

2F RESPONSE VARIANCE ODUE TO THIS EIGENVALUE IS*,F745,/,6X,

EIGVH221

T*FRACTICN OF RESPONSE VARIANCE DUE TO FIRST*,12,* EIGENVALUES IS*,EIGVYW222
4FT7e59/ 3/ 35X 9¥*X* 38X, *FUNCTION OF 1ST ARG* 93X, *FUNCTION OF 2ND ARG¥,EIGVW223

S/ lEXgFPaUySXgEL17e1045XyEL174+101)
IF (I.GE.NEV) GO TO 8080

CALL STOR(I)

CONT=,F.

GO TO 110

800 WRITE (6,805) NEVy(JyE(J)yJ=1,1)

EIGVHZ224
EIGVH2Z25
EIGYH226
EIGVYN227
EIGVH228
E£IGVYHZ229
EIGVH230

805 FORFPAT U(1H1 45X 9*FIRST*5129* EIGENVALUES ARER*,/,(10XyI2y2X,E15.7))EIGVNZ3L

FS=SR2*(1,~TFS)
WRITE (6,81C) FS,TFS
B81C FORMAT (1H0,S5X,*REMAINING EIGENVALUES SQUARED SUM TO*3E15.7,/56X,
1*THE ABOVE EIGENVALUES ACCOUNT FOR¥,F7.5,% OF THE RESPONSE VAR.*)
IF (FS.LT.0.) GO TO 900
FS=SQRT(FS)
WRITE (6,812) FS
812 FORMAT (1H ,SX,*LARGEST POSSIBLE REMAINING EIGENVALUE IS*,E14.7)
900 STOP § END

EIGVH232
EIGVH233
EIGVH234
EIGVH235
EIGVW236
EIGVW237
EIGVH238
EIGVH239
EIGVH24O
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SUBROUTINE VARW(SHoWL,U,S2)

A SUSROUTINE YO COMPUTE THE RESPONSE VARIANCE OF A LINEAR SYSTEM
SUBJECTED TC RAMPDOM INPUT WITH ORYDEN W=-GUST SPECTRUM

TURBULENCE STANDARD DEVIATION
TURBULENCE SCALE LENGTH
VEHICLE MEAN TRUE AIRSPEED

EIGVW241

EIGVW242
EIGVHNZL3
EIGVH244
EIGVH245
EIGVHN246
EIGVH2,7
EIGVH2L8

NEGATIVE OF VEHICLE IMPULSE RESPONSE EXPONENTS (POSITIVE REAL PTIEIGVH249

VEHICLE IMPULSE RESPONSE CONSTANTS

COMMON /CCNST/ CI(S5),AI(5) 4,NPOL

COMPLEX CI+Al3AJyAKyCJ9CKyC2,C3,C4401,D2
LOGICAL RLi,RL2

C=u/HL $ S2=0.

DO 20 K=1,NPOL

AK=AT{K) $ CK=CI(K) § Cu=0.
RLA=AIMAGULAK) sEQeD e e ANDsAIMAGICK) ¢EQeOs

-01=C+AK

00 10 J=1,NPOL

AJ=AItJ) § CJ=CIts) ¢ (C3=0.
RL2=AIMAG(AJ) oEQeDes AND, AIMAG(CJ) +EQeDo&

D2=C-AJ

C2=(C*(C+ {AK=AJ)/2,)/D1/D2-1,)/01/02
C2=C24C*(L¥¥2-3.%AJ**2)/ tAK+AJ) S (AJ+C) ** 2/ (AJ=C) **2
C2=(2*CJ*CK ¢ C3=C3+C2 ¢ 1IF (RL2) GO TO 10
AJ=CONJG(AJ) $ CJU=CONJGICJI) $ RL2=.T. . $ GO TO &
Cu=C4+C3

IF (RL1) GO TO 20

AK=CONJGIAK) $ CK=CONJGICK) $§ RLi=.T. & GO0 TO0 5
S2=SZ+REALLC4) ¢ S2=S2¥SW**2 ¢ RETURN $ ENO
SUBROUTINE FILL

C THIS SUBROUTIME INTERPOLATES THE 21 POINT EIGENFUNCTION TO FORM THE
C FIRSY APPROXIFATION TO THE 41 POINT EIGENFUNCTION.

c

10

c

COMMON /ARRAYS/ X(451,P(45)9Q(45)53T9T19K,XPyCC41) 9 NP, NSKIP
I1=NSKIP/2%1

00 10 I=I1,NP,NSKIP

XP=x(I) § K=I+1-It

CALL COEF(K,P40)
PLIN=CL(C(4)*XP+C(3))I*XP+C(2)) *XP+C(1)
CALL COEF{K4Q4C)

QEIN=C(CEL) *XP+C(3))*XPC12)) *XPeC (1)
NSKIP=NSKIP/2

RETURN 8§ END

SUBROUTINE GUESS(I)

G THIS SUEROUTIMNE GUESSES THE NEXT EIGENFUNCTION TO BE THE
C DERIVATIVE CF THE PROVIOUS RESULT OR X¥EXP{-3.*X) FCR THE FIRST.

c

10

St

COMNON ZARRAYS/ X(45) P U45) 9QC45) 3J9XJIyK,0XsCPsOUMILOD) NP, NSKIP
IF (INSKIP.LE.L) GO TO 70

IF (1.GT7,1) GO To SO

DO AC J=1,NF,NSKIP

gWI=0. § XI=X(J)

PLII=XJ*EXP(=3,%XJ)

RETURN

K=NSKIP#1
00 €0 J=K,NP,NSKIP
Q(JII=0. § DOP=P(II=-PlJ-1) § DX=X{J)=X{J=1) § XJ=X(J

EIGVHZ50

ONLY ONE OF EACH CONJUGATE PAIR IS TO BE USEDEIGVNH251

EIGVH252
EIGVH253
EIGVW25is
EIGVH255
EIGVH256
EIGVH257
EIGVH258
EIGVH259
EIGVH260
EIGVHZ61
EIGVH262
EIGVHZ263
EIGVH264
EIGYH265
EIGVH266
EIGVH267
EIGVW268
EIGVH2569
EIcvVH270
EIGVH271
EIGVH2T 2
EIGVN273
EIGYHW27 4
EIGVH275
EIGVH276
EIGVH277
EIGVH27 8
EIGYN279
EIGVH280
EIGYH281
EIGVH282
EIGVH28 3
EIGVN284
EIGVH285
EIGVH286
EIGVH28T7
EIGVW288
EIGVH289
EIGVH290
EIGVH291
EIGVW292
EIGVH293
EIGVH294
EIGVH295
EIGVH296
EIGVW297
EIGVH298
EIGVW299
EIGVYW3O0O
EIGVH3D1
EIGVH3D 2
EIGVW303
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XI=XJPEXP (=2, % XJ) EIGYH304

60 PCJI=XJ*DP/ DX EIGVH30S
RETURN EIGVW306

70 WRITE (6,71) NSKIP EIGVH307Z

71 FORMAT (LH »,5Xy*NSKIP =%,I10,*NOT ALLOWED IN GUESS*) EIGVH30 8
STOP ¢ ENO EIGVH309
SUBROUTINE AORMF(F) EIGVH310

c EIGVW311
C COMPUTES NORM OF P(X) OR Q(X) DEPENDING UPON USEP TRUE OR FALSE EIGVH3I12
C THE NCRK OF P OF Q IS THE ESTIMATED EVe, THE INVERSE IS THE NORM. FAC.EIGVW313
c EIGVH3L14
CONEON /ARRAYS/ xzus»,P(us:,o(usn,ccu»,F1,u91,J.I,x1,xz,II,crr,. EIGVH3L5
1TJ9KeCKyX129X229JJ9DUMI27) s NPy NSKIPSNPOLY,USEP . " EIGYH3IL6
LOGICAL USEF EIGVH3L7

Fi=Be $ NP1=NPOLY®L § JzNP=L EIGVN3L 8

00 68 I=1,J,NSKIP EIGVH319

F = 0. EIGVH320
IF(USEP) 10,11 EIGYW32L

18 CALL COEF (I,P,C) EIGVW322

G0 10 12 EIGVYH323

11 CALL COEF(I,Q,C) 4 EIGVH32,

12 X1=XCI) § X2=X(I*NSKIP) v EIGVN325

IF (X2.GT<X(NP)) X2=X(NP) EIGVW326

00 40 II=1,NPOLY EIGVH327
CII=C(II) § IJ=IIet § K=II+IJ=1 § CK=FLOAT(K) EIGYN328
X12=X1%*K $§ X22=X2%*K EIGVH329

00 %0 JJ=IJ,NPL EIGVW330

F = F+CIT*C(JJ)*(X22-X12)/CK EIGVW331
CK=TK+i. $ X12=X12*X1 EIGVW332

%0 X22=X22¥X2 EIGVH333
F=F*2, $ X12=X1%%2 § X22=X2¥%2 § CK=1, EIGVH334

N0 50 I1=1,NP1 EIGVH335
FF#(X2-X1)9(C(III**2)/CK § CK=CK+2. $ X2=X2¥X22 EIGVH336

56 X1=X1*X12 EIGVH337

60 FL=F1+F EIGYH338
F=SORT (1+/F1) EIGYH339
RETURN EIGVH360

c EIGVH341
C NORMALIZE EIGENFUNCTION P OR Q DEPENDING UPON USEP TRUE OR FALSE. EIGVH3N2
ENTRY NCRN EIGVH343

DO 186 I=1,MP,NSKIP EIGVH344

IF (USEF) 95,96 EIGVH3IHS

95 PLII=P(I)*F EIGVH346

G0 TO 100 EIGVH347

96 QEII=QUIY*F EIGYHIL A
100 CONTINUE EIGVW349
RETURN 8§ END EIGVH350
SUBROUTINE ORTHOG(I) EIGVN35L

c EIGVH352
C A SUBROUTINE TO ORTHOGONALIZE P(X) OR Q{X) WITH RESPECT TO THE FIRST IEIGYH353
C EIGENFUNCTIONS CEPENDING UPON USEP TRUE OR FALSE. EIGVH3SY
c EIGVW3SS
COMFON ZARREYS/ X(45) 4P(45) 50(45) 5DUM(45) NPoNSKIP s NPOLY, USEP, EIGVH356

1EFP 45,5 yEFQLL5,5) 3C14) 5,0 L) EIGVH357
LOGICAL USEP EIGVH3S S8

NP1 = NFOLY#L EIGVN359

B0 50 J=1,I EIGVH360

DO 10 JJ=1,NP,NSKIP EIGVH361

IF (USEF) 5,6 EIGVH362

5 DUNCIN=EFPLJJy N} EIGVH363

GO Yo 10 EIGVH36 G

6 BUMIJII=EFQLIS,JI) EIGVHI6S

10 CONTINUE EIGVH366
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K=NP=1 t F=0.
BO 40 JJ=1,K,NSKIP
IF (USEP) 20,22
20 CALL COEF(JJsP»C)
60 To 22
21 CALL COEF(JJ,Q,0)
22 CALL COEF(JJ.0UN,0}

X1=X(JJ) $ II=JI¢NSKIP $ 1IF (II.GT.NP) II=NP $ X2=XUIII)

D0 40 II=14NP%
X12=X41%*I] ¢ X22=X2%*I1 ¢ CII=C(II) § CL=FLOAT(ID)
B0 40 KK=1,NPt
F-FeCII*OIKK)I®(X22-X12)/CL § CL=CLel, § X12=X12%X1
L0 X22 = X22%¥X2
00 50 JJ=1,NP,NSKIP
IF (USEP) 45,46
45 PLIII=PLIJ) -F*DUMIS)
GO T0 59
46 QEINI=QCJJI)I=-F*OUNIIN
S0 CONTIMUE
RETURN § END
FUNCTIGR SUM(I.J)

Cc
C FORNS PRODUCT (U=1¢1)%(J~I420cecnscsl)
c
N=1
IF(1) 20,20,10
10 K=J-I»1
00 15 t=K,d
15 K=N*L
20 SUM=FLOAT({N)
RETURN ¢ £NO
SUBROUTINE COEF(I,A,C)
C A SUSROUTINE TO FILL C ARRAY WITH THE COEFFICIENTS OF THE
C POLYNOMIAL REPRESENTING A(X) BETWEEN X{(I) AND X{I+NSKIP)e. NPOLY IS
C THE ORDER OF THE POLYNOMIAL
C POLYNOMIAL IS C(1) + G(2)*X & C(3)*X*¥2 » Cly) *xX**3
Cc

DIMENSION A1} ,C(1)
COMMON ZARRAYS/ XU(45),PU45) ,Q01(45) yDUMI45) 3 NPyNSKIP,NPOLY
DATA NPOLY/3/
IF (I.GT4MNSKIP)} GO TO 10
N=1 ¢ GO TO 390
18 IF (I.LE.NP=2*NSKIP) GO TO 20
N=NP-3*NSKIF & GO TO 380
20 N=I-NSKIP
30 F1=A(N) $§ X1=X{N) $ N=N#NSKIP $ F2=A(N) § X2=X(N)
N=N#NSKIP § F3=A(N) § X3=X(N)
N=N#NSKIP § F4=A(N) § X&4=X(N)
F1=F1/(X1=-X2)/7{X1=-X3)/{X1=-Xb)
F2=F2/ (X2«X1)/ (X2=X3)/ (X2=X4)
F3=F3/7(X3=X1/ (X3=-X2}/ (X3~Xk)
Fu=FL/ (X4=X1) 7 {X4=X2) / (X4=X3)
CL)=FLe¢FZ+F3+FG

CUI)==FL¥ (X2+XI XL =F2¥ (XL X3 XL)~FI* X1+ X2 X4} =FL4* (X14X24X3I)
CL2I=SFA®IX2¥ (NI +XL) ¢ XI*¥X4) +F2¥ {XL* (X3¢ XL4) & XI*NG4) ¢ FIRIXL¥(X2¢X4) ¢

1X2*XLY+FLP (XL (X24X3) +X2%X3)
Cl1)==FL¥*X2* X3 XG=F2*X1* XTI *X4~FI*X1*X2* XL-FL*X1*X2%X3
RETURN % END
SUBROUTINE RIFC

C INTEGRATE CCMPLEX TERMS OF TRANSFER FUNCTION

c
EAQUIVALENCE (ELER) 3 (XE9XER) 5 (XEL1yXELIR) »(D1,01R)
COMFON /DIF/ X9EoNyD1

EIGVH3GBT7
EIGYHN36 S8
EIGVH369
EIGVH37T O
EIGVH37L
EIGVH3T2
EIGVH3Z 3
EIGVH37 4
EIGVHI?TS
EIGVH37H6
EIGVYW377
EIGVH3738
EIGVH3Z9
EIGVW38O
EIGVW3I8L
EIGVH3a2
EIGVH3E3
EIGVW384
EIGVH385
EIGVH3AS
EIGVHW387
EIGVH3BS
EIGVH389
EIGVH3SO
EIGVW391
EIGVH392
EIGVH3IS3
EIGVYHISH
£IGVYW39S
EIGVN396
EIGVN397
EIGVH3I9 8
EIGVW3IS9
EIGYW400
EIGVHL4O1
EIGVH4D 2
EIGYN&G3
EIGVHGO &
EIGVW4DS
EIGVH4D6
EIGVHGLO?
EIGVHLD B
EIGVHLOS
EIGVH410
EIGVHGLL
EIGVWG412
EIGYH413
EIGVHGLL
EIGVH41S
EIGVW41H
EIGVHLLT
EIGVWL41 8
EIGVWLL 9
EIGVN420
EIGVHL21
EIGVH422
EIGVHG23
EIGVHG2L
EIGVH425
EIGVH426
EIGVHAW27?
EIGVH42 8
EIGVH429

| assmagnSsEreescae
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CONFLEX E,XE,XE1,01
Ni=N+#1 ¢ 01=0.
IF (N) 70,10,20

CONSTANT TERM OF POLVYNOMIAL
10 01=t. $ GC TO 30

POHER TERM CF PCLYNGOMIAL

20 IF (X.NEesG8s) GO TO 25
B1={=1,/E)*¥N*SUN(N,N)
GO0 T0 30

25 XN=Xx**N
XE1=X*E § XE=1, $ Si=1. $ S2=FLOAT(N)
DO 28 I=1,4N1

DA=XN/XE*S14Di § XE=XE¥XEL & S1=S1*¥S2 § S2=S2-1.

28 XN==XN
3C C1=D1*CEXP(E*X)/E
78 RETURN

INTEGRATE REAL TERMS OF TRANSFER FUNCTION
ENTRY DIFR
Ni=N+1 € 0DO1=0.
IF (N) 170,110,120

CONSTANT TERM OF POLYNOMIAL
110 O1R=1. §$ GO TO 130

PONER TERM CF PCLYNOMIAL

120 IF (XeNEeCs) GO TO 125
DIR=(=1./ERI**N¥*SUNIN, N}
GO TO 130

125 XN=X%**N
XELR=X*ER § XER=1, §$ Si=i. § S2=FLOATIN)
DO 128 I=1,N1

DIR=XN/XER*S1¢D1R $ XER=XER*XEIR $ S1=S1%S2 § S2=S52-1,

128 XN==XN
136 D1=CMPLX(DLR*EXP(ER*X)/ERy0.0)
170 RETURN $ ENO

SUBROUTINE NTGRAL (V,XAB)

INTEGRATES P{IX)*HIX,XAB) OR GQG{(X)*H{XAB,X) DEPENDING UPON USEP TRUE

OR FALSE.

EIGYWL3O
EIGVHL3IL
EIGVH432
EIGVHA33
EIGVHL34
EIGVHG3S
EIGVHL36
EIGVHG3T
EIGVH438
EIGVHL39
EIGVHG4 D
EIGVHGG 1
EIGVHGL42
EIGVH443
EIGVHULG
EIG VW44 5
EIGVHL446
EIGVH447
EIGVHGLG 8
EIGVHL4 9
EIGVH450
EIGVWL51
EIGVHLS5 2
EIGVH453
EIGVW454
EIGVHL5S
EIGVH456
EIGVHLS7
EIG VW45 8
EIGVAL59
EIGVHL60
EIGVWL61
EIGVH462
EIGVYHL63
EIGVH46L
EIGVHL6S
EIGVHG66
EIGVHLE7
EIGVH468
EIGVH469
EIGVALT D
EIGVHLT 1
EIGVHLT 2

COMMON JARRAYS/ X{45),PI45),Q(45)4£1,E2,C14C2,C02,C03sCO04,CO06, IPOLEIGVHGT 3

1 9yNX yNPOyNFO41,TA,ICA,D1S84) yD2St4)yD1S1(4) 5 D1S214) NPy NSKI P, NPOLY,

2USEFLEFP(450),C(W)

COMMON /JCCNST/ CItS) AI(S) ;NPOL,B,B1
CCHFON /DIF/ X1,EyNPOM,D1C

DIMENSICN D1At225),01CA(9C0),CAC180)

COMPLEX D1CA,AI,CI,E,C1,C2,V1i,V2,E2,01C,01S1,015S2,C01,002,C03,

1C04,C05,CC6,01C01,01C2
LOGICAL RL,USEP

EQUIVALENCE (E,ER),L(D1,02,01C),tCO1,C02),(CO4L,005),(01C01,D1C2)

Vv=0. $ E1=EXP(-B*XABY} & ICA=0

CYCLE THROUGH PCLES OF TRANSFER FUNCTION
00 100 IPCL=1,NPOL

E2=CEXP (=XAB*(AT(IPOLY=B)) $ (C1=81*CICIPOL)/(AI(IPOL)=2,*8)
C2=C1*B § Ci=Ci*{AI(IPOL)=-B)/C(AI(IPOL)-2,*B) $ CO03=C2*E}

IF (USEP) 5,6
S CO1=(C1-XIB*C21%EL § CO5=Ci*E2 ¢ GO TO 7
6 CO2=(C1+XAB®C2I%E2 § COL=C2*(E2-E1) ¢ CO06=C1*EL
7 Vi=0e ¢ VZ=0. ¢ IA=1 ¢ ICA=ICA#1

EIGVHLT &
EIGVH47 S
EIGVH4T 6
EIGVA4T 7
EIGVHLT B
EIGVA4LT 9
EIGVHG80
EIGVHL4B1
EIGVHGLB2
EIGVH483
EIGVH4BS
EIGVH485
EIGVH4RE
EIGVHLET7
EIGVHLB B
EIGVH489
EIGVN430
EIGVAH491
EI6VN492
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. €

C CYCLE THROUGH X INTERVALS
© . DO 15 NPO=1,NPO%
~.DIS(NPO)I=D1A(IA) § IA=IA¢1 $ D1SLINPOI=DLCA(ICA)
IF (USEP) 12,13
© 12 D1S2(NPO)=D1CA{ICA)
GO TO 15
13 D2S(NPO)=D1ACIA)
15 CONTINUE
I=NSKIP#1 $ NXI=1
00 B8 NX=I,MP,NSKIP
X1=X(NX) $ TA=IA+IINC € ICA=ICA*IINC

c
C CYCLE T+ROUGH TERMS OF POLYNOMIAL
IF (USEP) 16,25
C
C COMPUTE NEW Q(BETA) EIGENFUNCTION
16 00 20 NPO=1,NPO1
01=C1ACIA) & IA=IA+1 § E=01-D1SINPC) § VI=COL1*E
01SINPOI=C1
IF (X1-XAB) 17,17,18
17 01C1=D1CA(ICA)

EIGVH433

EIGVHG 9%
_ EIGVHLIS
$ ICA=ICA+1EIGVW496
EIGYHLIT7
EIGVHLIS
EIGVHLID
EIGVH500
EIGVAHS01
EIGVW502
EIGVW503
EIGVH504
EIGYH505
EIGVNS06
EIGYH507
EIGVH508
EIGVHSO0 9
EIGVWSL10
EIGVHS11
EIGVWS12
EIGVWS13
EIGVHSLA4

ICA=ICA#+1 ¢ E=D1C1i-D1S1(NPO) § Vi=Vi-CO1*E § D1S1(NPO)=D1C1 EIGVH51S

D1C2=D1CA(ICAY $ E=01C2-D1S2(NPO) €& Vi=Vi-CO3*E EIGVH516
B1S2INPC)I=D1C2 EIGVHSL?7

GO0 Y0 19 EIGVWS18

18 Vi=v1i-COS*E EIGVH519
ICA=ICA+1 EIGVWS20

19 Ve=Vv2+V1*CA(NXI) EIGVHS21

20 NXI=NXIe#l EIGVWS22

GO 10 890 EIGVH523

C EIGVH524
C COMPUTE NEW P (ALPHA) EIGENFUNCTION EIGVH52S5
25 DO &0 NPO=1,NPO1 EIGVNS26
D1=D1A(IA) §& IA=IA+i $ E=Di-DiSI(NFO) §$ V1=CO6*E EIGVWS27

30 D1SINPC)=D1 EIGVH528

IF {(X1-XAB) 31,31,38 EIGVW529

31 D1C1=01CA(ICA) EIGVHNS30
ICA=ICA+1 ¢ E=D1Ci-D1S1(NPO} § Vi=Vi-CO6*E EIGVH531

35 D1S1(NPO)=D1IC1 EIGVYR532
D2=01A(IA) $ E=D2-D2SINPO) $ Vi=Vi-CO3*E ¢ D2S(NPOI=D2 EIGVW533

GO 10 39 EIGVW534

38 Vi=V1-CO2*E EIGYWS3S
D2=D1A(IA) $ E=D2-D2SINPO) $ Vi=V1i+CO4*E $ 02S(NPOI=D2 EIGVH536
ICA=ICA+d EIGVW537

39 V2=V24Vi*CAINXD) EIGYW538

40 NXI=NXIeg EIGVW539

80 CONTINUE EIGVHSLE

- IF ((ATIMAG(C1) EQe0e)eAND. (AIMAGC(E2)4EQ.0e¢)) GO TO 100 EIGVHSLL
V2=24*REALIV2) EIGVH542

106 V=vav2 EIGVHS4 3
Go 10 5040 EIGVH54LG

c EIGVHS4S
c EIGYHS5L6
C SET UP 01A AND CiCA ARRAYS EIGVHSL7
ENTRY STARAY EIGVHS4 8
NFO1=NPCLY+2 ¢ €ER=-3 § I=1 EIGVH549

00 203 NX=1,NP EIGVH55 @
X1=X{(NX) EIGVW551

00 20C NPO=1,NPO1 EIGVWS52
NPON=NPO-1 € CALL DIFR $ D1AC(II=D1 EIGVHSS3

200 I=I+1 ¢ I=1 EIGVHS5S 4
00 200 IPOL=1,NPOL EIGYHSS5S
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Ex=B-AT(IPCL)
B0 300 NX=1,NP
XL=XINX)

00 300 NPO=1,NPO1
NFOM=NPO~1 ¢ IF (RL)
CALL DIFC

GO TO 238

CALL DIFR

DiCAtII=DAC

I=]Ie1

GO T0 500

$ RL=AIMAGIE).EQ.D0.

6Q To 250

250
290
308

GENERATE TABLE CF PCLYNOMIAL COEFFICIENTS,
O DEPENCING UFOM USEP TRUE OR FALSE
ENTRY GENGOE

NPO=0

00 400 NXI=1,NP,NSKIP

IF (NXI<NF) 353,400,400

IF (USEP) 360,370

CALL COEF (NXI,P,C)

GO T0 375

CALL COEF (NXI,Q,C)

D0 380 NPO1=1,4

NPO=NPO®L

CA(NPOI=C(NFOL)

GCONVINUE

NFO1=NPCLY+{

IINC=(NSKIP-1) *(NPOLY#2) +1
RETURN § END

SUBROUTINE ITERAT(E)

350
360

370
375

380
400

500

cA. FOR EIGENFUNCTION P OR

A SUBROUTINE TO ITERATE THE EIFENFUNCTION P({X) OR Q(X) DEPENDING

UPON USEP TRUE CR FALSE.

COMMON ZARRAYS/ X(45)4PU45) 3Q(45) ,DUM{45) 3 NP,NSKIP;NPOLY,USEP

CCMMON /EVAL/Z EVPL,EVQ
EQUIVALENCE (PI,QI)
LOGICAL USEF

CALL GENCOEIQ,X)
Qt1Y=0, t P(1)=0.
00 S0 I=I1,NP,NSKIP
IF (USEF) 3G,40
QI=Q(I)*EVQ

CALL NTGRAL(Q(I),X(I)}
E=E+(ABS(QI)-ASSIQ(I)) ) **2
GO TOo S50

PI=P(I)*EYP

CALL NTGRAL(PIIN,X(IM)
E=E+{ABS(PI)~-ABS(P(I)))**2
CONTINUE

E=SGRT(E) /FLOAT (NP)
USEP=¢NOTUSEP

RETURN € END

SUBROUTINE STOR(I)

) E=0. 9

3G

4C

50

STORES ITH EIGENFUNCTION
PIX) IN EFPI(X,yI)y Q(X) IN EFQIX,I)

I1=NSKIP#1

COMMON ZARRAYS/ X(45),PU45) ,Q(45) 3 50UM4L) yNPyNSKIPyNPOLY,USERP,

1EFPIL4S,45) yEFQ(65,5)
DO 18 J=1,4NP
EFPLJ, IV =P (J)
10 EFQUJ,INV=Q4J)

EIGVWS556
EIGVHSS7
EIGVH558
EIGVH559
EIGVH560
EIGVHS561
EIGVHS62
EIGVW563
EIGVWS6 4
EIGVH565
EIGVHS566
EIGVH567
EIGVH568
EIGVH569
EIGVHSTO
EIGVW571
EIGVHST 2
EIGVNS73
EIGVHS7 &
EIGVWS75
EIGVHS57 6
EIGVWS7?
EIGVHST 8
EIGVWS79
EIGVHS80
EIGVHSS1
EIGYNS82
EIGVH583
EIGVW53 4
EIGVH585
EIGVHS86
EIGVH587
EIGVHS588
EIGVH589
EIGVW590
EIGVN591
EIGVW592
EIGVH593
EIGVHS94
EIGVWS95
EIGYW596
EIGVWSI7
EIGVH598
EIGVHS599
EIGVHW60G
EIGVW6E01
EIGVHBD2
EIGVWE03
EIGVNGO04
EIGVWS05
EIGVWGE06
EIGVH6D7
EIGVWG(0 8
EIGVHE609
EIGVNG61 0
EIGVHWE11
EIGVH6L2
EIGVHDBL3
EIGVHWO1%
EIGVHBL5
EIGVHG616
EIGVW6L17
EIGVWG13



c

RETURN $ ENO
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SUBROUTINE FFT (AyMyINV,S,IFSET,IFERR)

EIGVHG619

FFT00001
FFTCa002

C FAST FOURIER TRANSFORM FOR COMPLEX FUNCTIONS OF UP TO THREE DIHENSIONSFFTOGOD3

C WRITTEN BY DUANE HARDER,

C AVAILABLE THRCUGH VIM INC.

C

10
20

30

40

50

60
70

80

90

100

110

1280
130

DIMENSICN A1), INVI1)5S(1),N(3),M(3)9NPI3), HI2) 4 N2(2) 4H3I(2}

EQUIVALENCE (Ni,NTD)),

FEBes 1969

(CDC USER ORGANIZATION)

(N29N(2))y (N34N(3))

IF (IABS(IFSET)-1) 610,610,20
MTT=MAX3 (M{1),M(2) 4 M(3) ) =2

ROOT2=SART(2.)

IF (MTT=MT) 40,40,30
IFERR=1

RETURN

IFERR=10

Mi=N(1)

M2=¥(2)

M3I=¥(3)

Ni=2%%M1

N2=2%%*NM2

N3=25¥M3

IF C(IFSET)Y 58,50,70
NX=N1*N2*N3

FN=NX

DO 60 I=1,NX
A(2%I-1)=A(2*%I=-1)/FN
A(2*I)==A(2*I}/FN
NPC1)=N1*2
NPIZ)=NP (1) ¥N2

NP {3)=NP(2)IN3

00 33¢ I0=1,3
IL=AP(3)=NPLID)
IL1=TL+2

MI=M{ID)

IF ™MI) 330,330,80
IDIF=NP(ID)
KEIT=NP(I0D)
MEY=2*(M1/2)

IF (MI-NEV) 120,120,920
K3IT=KBIT/2
KL=KBIT-2

00 100 I=1,IL1,IDIF
KLAST=KL+1

00 100 K=I,KLAST,2
KD=K#KBIT

T=A(KD)

A(KDYI=AIK)~T
ACKISA(K) 4T
T=A(KD#1)
A(KO#1)=A(Ke+1) =T
A(K#L)I=ALK+L1) +T

IF (MI-1) 330,330,110
LFIRST=3

JLAST=1

GO TO 130

LFIRST=2

JLAST=0

BO 320 L=LFIRST4MI,?2

FFT00004
FFTG000S
FFT00006
FFT00G07
FFTO0008
FFT00009
FFT00010
FFT00011
FFTG0012
FFTQO013
FFT000L14
FFTG0015
FFT00016
FFT0QGL7
FFT00018
FFT0G019
FFT00020
FFT00021
FFT00022
FFT00023
FFT00024
FFT0g025
FFTGOO026
FFTgo027
FFTG0G28
FFT00029
FFT00030
FFT00031
FFT00032
FFTO0033
FFT00034
FFT00035
FFT00C36
FFT00037
FFT00038
FFT00039
FFT000%0
FFTO0041
FFT00042
FFT00043
FFT00044
FFT0G0045
FFTOUG46
FFT00047
FFT0004 8
FFT00049
FFT 00058
FFTO0051
FFT0G052
FFT00053
FFTOG054
FFT03055
FFT20056
FFT00057
FFT00GSS



140
150

JIDIF=KEIT

KBIT=KBIT/&

KL=KBIT=~2

DO 148 I=1,IL1,I0IF
KLAST=I*KL

DO 140 K=I,KkLAST,2
Ki=K¢KBIT
K2=K14¢KBIT
K3=K2¢KBIT

T=A(K2)
AL{K2)=A LK) =Y
ACKY=AC(K) #T
T=A(K2+1)

CACK2+¢1)=A(KI1) =T

A(K+1)=A(K+1) #T
T=A1K3)
A(KI)=A(K1) ~T
ACK1)=ALK1) T
T=A(K3¢1)
A(K3I+1)=A(K1+1) =T
A(K1+#1)=A(Ki¢1)+T
T=AC(K1)
AtK1)=AtK) =T
A(KI=ALIK) +T
T=A(X1+1)
A(K1+1)=A(K#1) =T
A(K®#1I=A(Ks1D T
==A(K3 1)

T=A(K3)
A(KI)I=ALKED) =R
A(K2)=A(K2) *R
A(K3+1)=A(K2#1)~T
A(KZH+1)=A(KE+LD T
IF (JLAST) 310,310,150
JI=JINTIF ey
ILAST=ILeJJ

D0 168 I=JJ,ILAST,IDIF
KLAST=KL#]

DO 160 K=I,KLAST,2
Ki=K#KBIT
K2=K1+KEIT
K3I=K2+KBIT
R==A{K2+})

T=AK2)
A(K2)=A(K)=R
ACKI=A(K) ¢R
A(K2¢#1)=A(K#1)~T
A(K#1)I=ACK+1)+T
AHR=A(K1) =A(KLi+1)
AWI=A(K1+1) #A (K1)
R==A(K3)=A(K3¢1)
T=A(K3) ~A(K3+1)
AIKZ)=(AHR~RI/RO0T2
A(KI+1)I=(LWNI-TI/ROOT2
A(K1)=C(AWK+R) /RO0OT2
A(K141)=(ARI+T)/RO0OT2
T=A(K1)
AtK1)=AIK)=~T
A(KI=A(K) ¢T
T=A(K1¢1)
AIK1+1)=A(K#41) =T
A(K#1)=A(Ke1)eT
z=p(K3e1)
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FFT06059
FFT00060
FFT0061
FFT06062
FFT00063
FFT00064
FFTL0065
FFT00066
FFT00C67
FFT00068
FFT06069
FFT00070
FFTO0G71
FFT00072
FFTa0073
FFT0007 %
FFT00075
FFT00076
FFT00077
FFTOC078
FFT0007 9
FFT00580
FFTO0uS1
FFT0G082
FFT00083
FFT00084
FFTG0085
FFTG0086
FFT 06087
FFT06088
FFT00089
FFTQ0090
FFT00091
FFTG0092
FFT0U093
FFTO0G9%
FFT0G095
FFT00096
FFT00097
FFT00098
FFT0G099
FFT06100
FFTA0101
FFT00102
FFT00103
FFT 00104
FFT00105
FFTG0106
FFT00107
FFT00108
FFT00109
FFT00110
FFTOO111
FFTO0112
FFT001L3
FFTOL114
FFT00115
FFT00116
FFTO0117
FFT00118
FFTGL119
FFY00120
FFTO0121



" 1860

170

1890

190

200

210

220

230

240

250

260

270

2890
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T=A(K3)

ALKII=ALKZ) =R
AIK2)=A(K2) *R
ALKI+1)I=A(KZ2+1)-T
A(K2#1)=A(K24+1) ¢T

IF C(JLAST~1) 310,310,170
JJ=JJI+JJOIF

D0 300 J=25JULAST
I=INV(J L)

IC=NT-1

H(1)=S(IC})

HE2)=S(D)

I2=2%1

I2C=NT=-12

IF (12C) 200,130,180
W211)=S(I2C)
H212)Y=S(12})

GO TO 210

H2(1) =0,

H2(2)=1.

GO 70 210

I2CC=T2C+NT

I2C=~12C

W2(1)1=-St12C)
H212)=S(12CCY

I3=1+12

I3C=NT=~1I3

IF (I3CY 240,230,220
W3(1)=S(I3C)
H3(2)=S(1IJ)

GO Y0 230

W3 (11=0,

HI(2)=1,

GO T0 280

I3CC=I3CeANT

IF (I3CC) 270,260,250
I3C=-13C

W3(1)==-S(13C)
H3(2)=S(I3CC)

GO TO 280

HI(1)==1,

W3(2)=0,

GO TO 280
I3CCC=NT+13CC
I13CC=-12CC
W3(1)=-S{13CCC)
W3(2)==S(1I3C0C)
ILAST=IL+JJ

00 290 I=JJ,ILAST,IOIF
KLAST=KL+1

00 29 K=T,KLAST,2
Ki=K+KBIT

K2=K1#K8IT

K3=k2¢KBIT
R=AL(K2)*H2(1)=A(K2+1) *N2(2)
T=A(K2)*HZ(2)+ALK2¢1) *H2 (1)
A(K2I=A(K)}=K
ALK)I=ACK) #R
A(K2+1)=A(K#1) =T
ACK#1)I=ACKE1)+T
R=AIK3I*HI(1)=A(KI+1) *H3I(2)
T=A(K3)*WIL2) +A(K3 1) *HI (1)
AWR=A (K1) *HI1)=A(KL¢1) *H(2)

FFTO0122
FFT00423
FFT30126
FFTO0125
FFT00126
FFT00127
FFT00128
FFT00129
FFT00130
FFToo131
FFT00132
FFT00133
FFT00134
FFT00135
FFT00136
FFT00137
FFT00138
FFT00139
FFT00140
FFTO0141
FFTO014 2
FFT00143
FFTO0L44
FFTJ0145
FFT00146
FFT00147
FFT00148
FFT00149
FFT00150
FFT00151
FFTCa152
FFT00153
FFT00156
FFT00155
FFT00156
FFT00157
FFT00158
FFT00159
FFT00160
FFTOD161
FFT00162
FFT00163
FFTO0164
FFTO0165
FFT0C166
FFT00167
FFT00168
FFT00169
FFT00170
FFTQO171
FFTaai72
FFTGO173
FFT 00174
FFTQ017S
FFTO0176
FFTOC177
FFTO00178
FFT00179
FFT00180
FFTU0181
FFT00182
FFT00183
FFT0018%



29¢ -

300

310

329
330

340

3590

360

370

380

39¢

400

410

420

438

AHI=ATKL) *W(2) +A(KL1¢1) *H (L)
AC(KI)=AKR=-R
A(K3+1)=AKI=-T
A(KL1)=AURR
A(K1+1)=AKI+T
T=ALK1)
AtK1)I=A(K) =T
ACKI=A(K) +T
T=A(K1i+1)
AtK1+1)=AIK+1) =T
ALKEL)=A(KEL) T
==A(K3+1)
T=A(K3)
A(K3)I=A(KZ) =R

- AIK2)=A(K2) R
AIK3I+L)=AUIKZ#1)-T

ALKZ+1I=A(KZe1) T

CJI=JIDIFHIY

JLAST=4L*JLAST+3
CONTINUE

CONTINUE

NTSC=NT*NT
M3IMT=M3=-MT

IF (M3MT) 350,340,340
1603=1

NIVNT=N3/NT
MINMP3I=NT

G0 T0 360

I603=2

NIVNT=1

NTYN3=NT/N3
MINN3=N3
JJD3I=NTSQ/NI
M2HT=M2=-NT

IF (M2MT) 328,370,370
I602=4

N2VYNT=N2/NT
MINN2=NT

GO 10 339

1602=2

NZ2VNT=1

NTUN2=NT/N2
MINN2=N2
JJDZ2=NTSQ/N2
MLMT=M]=-MT

IF (MIMT) 410,000,400
IG01=1

NIVNT=NL/NT
MINNLI=NT

GO TO 420

I16G01=2

NiVYNT=1

NTVNLI=NT/NL
MINN1=N1
JJD1=NTSQ/N1

JJ3=1

J=1

00 S70 JPF3=1,N3VNT
IPPI=TINVIJIID)

B0 S56C JP3I=1,MINN3
GO TO (430,44%0), IGO3
IP3=INV{JPI)I*NIVNT
GO 70 458

217

FFT00185
FFTO00186
FFT00187

 FFTO00188

FFT00189
FFT Q3190
FFTO8191
FFT0u192
FFT00193
FFTQ019%&4
FFTQ0195
FFT00196
FFTQ0197
FFT0G198
FFT00199
FFTO0G0200
FFTQ0201
FFTOG202
FFT00203
FFT0a204

. FFT00205

FFT00206
FFT0G0207
FFT00208
FFT00209
FFTOU210
FFT00211
FFTQ0212
FFT00213
FFT0J214%
FFTOuU215
FFTGu216
FFT00217
FFT0G218
FFTC0219
FFTG0220
FFTD0221
FFT0d222
FFTU0223
FFTO022%
FFT00 225
FFT00226
FFY08227
FFTJ0228
FFT0G229
FFTGQ230
FFT06231
FFT00232
FFT00233
FFTo023 4
FFT00235
FFT00236
FFT09237
FFT00238
FFT00239
FFT00240
FFTu02W L
FFT0G242
FFTO02L3
FFTQ026 4
FFT00245
FFT00246
FFT00247



440
450

460

L70
480

490

590
510

520

530
540
558
560
5740

580
5940
600
618
620

630

6540

650
660
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IP3=INVIJP3)/NTVN3
I3=(IPPI+ IPII¥N2
JJ2=1

DO 56N JPF2=1,N2VNT
IPP2=INVIJJ2)*+1I3

DO 55¢ $Pz=1,MINN2

GO TO (46080,470), 1IGO2
IP2=INV(JP2)*N2VNT

GO TO 488
IP2=INV(JF2)/NTVYN2
I2=(IPP2+IP2) *N1
JJii=1

00 550 JPF1=1,NiVNT
IPPI=INV{JIL1)+ ]2

00 540 JP1=1,MINNL

GO TO (490,500), IGOL
IPI=INV(JF1)*NLVYNT

GO T0 S10
IPL1=INV(JFL)/NTVNL
I=2*(IPFL1+1IF1)+1

IF (J-I) 520,530,530
T=ALI)

ACIN=A(J)

A1YY¥=T

T=A(I+1)
ACT+1)=ACJ¢1)
AtJe1)=T

CONTINUE

J=Js2

JJ1=J91+93D1

JJz=3J42 3402
JJI3=4J3+J4013

IF (IFSET) 580,600,600
D0 590 I=1,NX
Atz2=I)==A(2*I)

RETURN
RT=MAXO (M (1) ,M(2),N(3)) =2
MT=PAXT (2 4MT)

IF (MT-20) €30,630,620
IFERR=1

GO TO0 608

IFERR=0

NT=2%*NT

NTV2=NT/2
THETA=47853S81634
JSTEP=NT

JOIF=NTY2
S(JCIF)=SINC(THETA)

00 €60 L=2,*T
THETA=THETA/2,
JSTEP2=JSTE¥F
JSTEP=JODIF
JOIF=JSTEP/2
S{JCIFI=SIN(THETA)
JC1=NT=JOIF
SCJC1I1=COS(THETA)
JLAST=NT=-JSTEP2

IF (JLAST=JSTEP) 660,640,640
CO €S0 J=JSTEP,JLAST,JSTEP
JC=NT=J

JD=J+JOIF
S(JIDI=S(JI*SWICL) +S(JODIFI*SCIC)
CONTINUE

FFTO0248
FFT002%9
FFY00250
FFT0G251
FFT00252
FFT00253
FFT00254
FFT00255
FFT00256
FFT00257
FFT30258
FFT00259
FFT00260
FFT00261
FFT00262
FFTOC263
FFT0C264
FFTG0265
FFT00266
FFT00267
FFTJ0268
FFT80269
FFT00270
FFT00271
FFT00272
FFTO00273
FFTG027¢6
FFT00275
FFT30276
FFT00277
FFT0027 8
FFT00279
FFT30280
FFT00281%
FFTGCO282
FFT00283
FFT00284
FFT00285
FFT00286
FFT00287
FFTJ0288
FFT00289
FFT00290
FFT00291
FFT00292
FFT00293
FFT 00294
FFT00295
FFT00296
FFT00297
FFTO0298
FFT00299
FFT0C300
FFTG0301
FFT06302
FFTQ00303
FFT30304
FFT00305
FFT00306
FFTCJ307
FFT00308
FFTO06309
FFTJ0310

B e
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c FFT00311
C SET UP INVIJ) TABLE FFTg0312
MTLEXP=NT VY2 FFT00313
LMLEXP=1 FFT00314
INVI1D)=0 FFT0G315

DO 680 L=1,¥T FFTUu 316
INVILMLEXF+1)=MTLEXP FFTO4317

DO €70 J=2,LMLEXP FFT00318
JI=JHLMLEXP FFT00319

670 INVIJJI=TAVLJI) +MTLEXP FFT00320
MTLEXP=MTLEXP/2 FFT30321

680 LNLEXP=LMIEXP*2 FFT03322
IF (IFSET) 20,600,20 FFT00323

END FFTa0324
SUBROUTINE FFTRS(X,0XyOFyMyINVsSsIFS,IFER) FFTRSO01

c FFTRS002
C FOURIER TRANSFORM OF REAL SYMMETRIC OATA STORED AS GCOMPLEX ARRAY X FFTRSO003
c FFTRS00 &
CIMENSICN X (1) 4M(1),INVI1),S(1) FFTRS00S

c FFTRSGO®
DF=1./70X/2.%¥M(1) § X{1)=X(1)*DXx & X{2)=0, § Ii=3 FFTRSOO7
I2=2**(N(11+1)=1 & MNL=2%*(M(1)~1) FFTRSQ0 8

00 10 T=1,M% FFTRSCD9
XLIV=(XCILIX(I2)D*DX & X(I2)=X(I1) FFTRS010
X(I1+1)=0, $ X(I2+1)=0. $ I1=I1+2 FFTRSGL1

10 I12=12-2 FFTRS012
IF=IABSUIFS) FFTRSOL3

CALL FFT(XyM3INV,SyIF,IFER) FFTRSO14
RETURN ¢ €END FFTRSOL1S5

D000 O0O0OOO0

PROCGRAM INCPOUINPUT,O0UTPUT,PUNCH,TAPES=INPUT,TAPE6G=0UTPUT,TAPE7= INCPDOO1

1PUNCH) INCPDOG 2

A PROGRAM TC GEMPERATE ANO FCURIER TRANSFORM ONE-OIMENSTIONAL CHARACTER=-INCPOCO3
ISTIC FUNCTIONS OF THE GENEPAL NON=-GAUSSIAN MODEL. CORRELATION INCPDOO G
MATRICIES AND FUNCTIONAL MATRIX ARE READ FROM DATA CARDS. INCPDGOS
PROGRAM PRINTS FRO3ASILITY OENSITY FUNCTION IN BOTH STANDARDIZED INCPDOD 6
AND NONSTANDARDIZED FORM IN INCREMENTS OF DX*SR FROF¥ ZERO TO INCPDGO7
200*0X*SRe RESULTS ARE PUNCHzZD ON CARDS IF LOGICAL VARIABLE PNCH INCPDCO S
IS SET TRUE, INCPDOOD9
INCPOO10

INPUT DATAS INCPDG11
TITLE (8A10) DESCRIPTIVE TITLE TO ACCOMPANY QUTPUT INCPDOL2
NOIM (I1) SIZE OF MATRICIES (.LE.8) INCPOG13

SG2 (F108.5) VARIANCE OF GAUSSIAN PROCESS INCPDOL G

A ((ACTI9J)9yJ=19NDIMI,I=1,NOIM) BY ROWS (UP TO 8 COLUMNS) INCPDOLS
CORRELATION MATRIX OF FIRST GAUSSIAN VECTOR INCPOOL16

B (SAME FCRFAT AS A) CORRELATION MATRIX OF 2ND GAUSSIAN VECTOR INCPOOL?

C (SAME FCRNAT AS A) FUNGCT IONAL MATRIX INGPOD13
INCPOOLS

COMMON /CCR/ A(8,8),8(85,8),C(8,8),NDIM,ISIZE,DETA,DETB, INCPDO2D
1A1(848)4B1(848),C4(8,8),A2(8,8),B82(8,8) INCPOUZ21
COMFPON / / S1128),INV(128),PD(1026) INCPDO22
DIMENSION M(3),PHI(1026),TITLE(S) INCPDO23
EQUIVALENCE (PD(1),PHIC(1)) $ LOGICAL PNCH INCPOB2 &
DATA PNCH/.Fa/ INCPDO25
DATA M,IFS/S99,0,1/ INCPOC26
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C MINIMUN VALUE OF M{1) FOR OX OF .05 AND XMAX OF 10. IS 9 (512) INCPDO27
0ATA DX/.05/ ) . ) INCPDO28
C NORMALIZED OENSITY IS TO BE EVALUATED AT X/SIGMA = MULTIPLES OF DX INCPDO29
DATA C1,C24C3/7.6388888889E~03y=6445833IIIIIIE~0255.5694404 444E-01/7INCPOG3O
€C C1,C2,C3 ARE C(ONSTANTS USED IN NUMERICAL INTEGRATION OF PROBs DENSITY INCFDU31

G . INCPDO32
DATA PI22/3S.473417604/ INCPDG33

DATA IS1zZeE/se/ ' INCPDO3%

1 FORMAT (8A10,/yI1,/,F10.5) ) i INCPDG3S

2 FORMAT (8F10.5) ) INCPDO36

3 FORVMAT (LH 45X,8F10.5) INCPDO37

4 FORMAT (1HDB) INCPDD3 B

5 FORMAT (1H1,5X%,8A10) ) INCPDG39

6 FORYAT (1HO,5X+*COVARIANGCE MATRIX OF 1ST GAUSSIAN VECTOR*) INCPDO%0

7 FORMAT (1HD,5X,*COVARIANCE MATRIX OF 2ND GAUSSIAN VECTQR¥) INCPOGGL

.8 FORMAT t(41HO0s5Xo*FUNCTIONAL RELATION MATRIX*) INCPDOG2

C READ INFUT CATA INCPDO43
15 READ (S.,1) TITLE,NOIM,SG2 INCPOCGG

- IF tEQF,5) 400,16 INCPOOL4S

16 WRITE (6495} TITLE INCPDO4 6
HWRITE (646) INCPOO%7

B0 17 I=1,NCIM INCPDOL4 S

READ (5,2) (AtI,J),J=1,NOIN) INCPOO49

17 WRITE (6,2) (Al(I,J)yJ=13NOIM) INCPDOS5 O

: HRITE (6,7) INCPDUS 1
DO 18 I=1,NCIN INCPOG52

READ (5,92) (B(IyJ)y9J=1,NDIN) INCPOCS3

18 HWRITE (653) (B{IyJd)yJ=1,NOIM) INCPO0S 4
HRITE (6,€) INCPOOS5S

00 19 I=41,NDIN INCPOOS6

REAC (5,2) (C(I,yJ),J=1,NDIM) INCPDOS7

19 WRITE (693) (C{IyJ)sJ=1yNOIM) INCPDGS5 8

c INCPDGS 3
C CALCULATE STANDARD DEVIATION OF TOTAL PROCESS, SR INCPDGHO
SR2=S62 INCPDOUBL

DO €80 I=1,NCIN ¢ DO 60 J=1,NDIN INCPDOB 2
CIJ=C(I,J4) $ IF (CIJ.EQ«Qe.) GO TO 68 INCPOOB3

00 59 K=1,N0IN ¢ 00 S0 L=1,NDIM INCPOOG 4
CKL=C(K,L) ¢ IF (CKL.EQ.8.) GG TO 50 INCPDGGS
SR2=SR2+A(I,K)*B(J,L) *CIJ4*CKL INCPOGSE6

S0 CONTINUE INCPOGE7

60 CONTINUE INCPOOG S
SR=SORT{SK2) % MWRITE (6,65) SR INCPDO69

65 FORMAT (1HO»5X,*STANDARD DEVIATION OF PROCESS =¥%yE10.,3) INCPDO70

C INCPDO71
C GENERATE CHARACTERISTIC FUNCTION INCPOO72
CALL INVRS INCPOO73

WRITE (6,470) DETVA,DETS INCPOO7 &

7C FORFAT (1P0,5X,*DCTERMINANTS OF COVARIANCE MATRICIES®+/,6X, INCPDO75
L¥0ETA =%,E12.59/+6X»*0ETS =%,E42.5) INCPDO76
EVG2=SG2/2s $ F=0e & DOF=1./DX/2,%*N{1) & NPTS=2%%{M(1)+1) INCPOOZ77
DFL=DF/SR INCPDO78

D0 150 I=1,NPTS,2 INCPOO79
F2=FI22%F%*2 INCPOGBO
CFR=1, INCPDG81

CALL CF1(CFF,yF) INCPOOBZ2
CFR=CFR¥*EXP (=EVG2*F2) INCPDOB3
PHI(I)=CFR § PHI(I*1)=0, INCPOQ84

150 F=F+0F1 INCPDGB5

c INCPOUOSBS
C FOURIER TRANSFORM TC O0BTAIN PROBABILITY DENSITY INCPDOB7
CALL FFTRS(FHI,DF yDXyHyINY,S,1FS,IFER) INGPDDSBS

IFS=2 INCPDOBS
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IF (IFER.ANE,0) WRITE (6,200) IFER

INCPOOI0

200 FORMAT (1HOD,*-=~~=ERROR IN FFT, ERROR FLAG =%*,12y/55X,*RESULTS INVAINCPDOO1

219

2290

221 FORMAT (1HO 45X, *NORMALIZED®,4X,*STOIZED* 44X, *DISTRIBUTION*,5X,
1¥UNNORMALTIZED® 93Xy *NONSTOIZED*,/ 97X »*VARIABLE® y3Xs*PROBABILITY*,
24X s *FUNCTIOM* 39Xy *VARIABLE® 5X, *PROBABILITY®* 3/, 7X,*X/SIGHA X*¥,
IGX s POENSITY* 927Xy *X*¥ 310Xy *DENSITY*4/)

250
255

260
265

222
223

1LID FGR THIS CASE*)

IF (PNCH) HWEITE (7,219) TITLE
FORPAT (8A10)

HRITE (6,220) TITLE

FORKAT (1H1,5X,8A10)

WRITE (6,221}

DX1=DX*SR2

CD=.5 L 1 X=0. 4 Xi=0.

LINCNT=0

N=INT(10,/70X)#2

IF (NJGT NPTS/4&) N=NPTS/Z4 § N=N*2
JMA X=N

00 250 J=1,N,2

IF (PO(J)oLTeDs) GO TO 255

CONTINUE

GO0 TO 265

JMAX=]

D0 260 I=JyNy2

POLIN=0.0

CONTINUE

IF CoeNOT«PNCH) N=JMAX

RO 300 J=14N,2

UPO=FDtJ) /SR2

HRITE (64222) XsPO(J)4CO0,4X1,UPD
FORVMAT (1H 47X9F6e3 ol X9EL100393IX9EL26596X9EL0aT 94X 4EL10.3)
IF (PNCH) HWRITE (7,223) XyPDUJ),C0eX1,UPD
FORMAT (SE1€.8)

LINCNT=LINCNT#{

RESULTS ARPE PRINTED AT 51 LINES PER PAGE

290
291

292

293
294

300
400

IF (LINCNT.LT.51) GO TO 290

IF (J+GE.N=-1) GO TO 308

HRITE (645220) TITLE

HRITE (69221)

WRITE (6,222) X,PDUJ)4COyXL,UPD
LINCNT=1

IF (J=3) 291,292,293
CO=CD+(CL*PC(JI+4]} +C2+PD(J+2)) DX
GO TO 2%

CD=CO+ (CL*PC(J)+C2%P0(J-2))*0X
GO TO 294

CO=CD+{CL¥PC(J=-4) +C2*PD(J=2))*0DX
CD=CD+(CL1*PC(J*6) +C2*PD({J+4) +C3*(PD(J) +PD(J+2)) ) *DX
X=X+0X

X1=X1+0X1

GO TO 15

STOP § END

INCPDO92
INCPOO93
INCPDOOG
INCPDO9S
INCPD096
INCPDO97
INCPDOOS
INCPDO99
INCPD100
INCPD101
INCPD10 2
INCPO10 3
INCPO10 &
INCPD10OS
INCPDL10O6
INCPDLO7
INCPO10S
INCPDLO9
INCPD110
INCPO1112
INCPO1L12
INCPD113
INCPDilG
INCPD11S
INCPD116
INCPD117
INCPD11 8
INCPO119
INCPD120
INCPD121
INCPD122
INCPO123
INCPD12 %
INCPD12S
INCPD126
INCPD127
INCPD128
INGPD129
INCPD130
INCPO131
INCPO132
INCPD133
INCPD134%
INCPD13S
INCPD136
INCPD137
INCPD138
INCPD139
INCPO14 10O
INCPD1414
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SUBROUTINE INRPDT(V,IyJyKK)
SUBROQUTINE TO CCMPUTE THE INNER PROOUCT OF TWO EIGENFUNCTIONS

€ = ARRAY OF EICENVALUES .
EFP = ARRAY OF F EIGENFUNCTIONS (EIGENFUNCTIONS OF 1ST VARIABLE)
EFQ = ARRAY OF G EIGENFUNCTIONS (EIGENFUNCTIONS OF 2ND VARIABLE)
F1,F2 = TEMPORARY STORAGE ARRAYS
IyJd = ITH AND JTH EIGENFUNCTIONS ARE TO BE USED IN COMPUTATION
KK = # IF P EIGENFUNCTIONS ARE TO BE USED IN COMPUTATION
- IF Q EIGENFUNCTIONS ARE TO BE USED
NPOLY = DEGREE CF INTERPOLATING POLYNOMIALS
NPT = NUNBER OF ABCISSAE POINTS
v YALUE OF INMER PRODUCY RETURNED B8Y SUBROUTINE
X ARRAY OF ABCISSAE

COMMON ZARRAYS/ E(8) JEFP(LS,8) oEFQIL58) 4 X (45),FL(45)4,F2(45),
INPTHNPOLY ,C(4) ,D(4)

NC=NPOLY+1 ¢ IF (KK) 10,100,515

INNER PRODUCTY (Q(IV,Q(J))
10 00 11 L=1,NPT '
FLIL)=EFQIL,I)
11 F2ULI=EFQ(L,J)
GO T0 20

INNER PRODUCT (FI(D),PLM)

15 DO 16 L=1,NPT
FLILY=EFP(L,I)

16 F2(LI=EFP(L,yJ}

20 V=0.0 & K=NPT=-i

0O %0 JJ=1,K

CALL COEF{JJsF1,C) $ CALL COEF(JJI,F2,D)

X1=X€JJ) §  X2=X{(JJI*l)

DO 40 II=1,4NC

X12=X1**I1 $ X22=X2%*1l

CII=C(II) $§ CL=FLOAT(ID)

00 40 LL=1,NC

V=VSCII*D(LL)*IX22-X12)/CL $ CL=CL#¢1, $ X12=X12¥X1
40 X22=X22%X2

RETURN

100 WRITE (6,101}
101 FORMAT (1HO,5X,*FATAL ERROR IN INRPOT, KK=0*%*)

STOP § ENO

SUBROUTINE INVRCA,N,DETERMN,ISIZEJSIZE)
SUBROUTINE TO INVERT MATRIX A AND COMPUTE ITS DETERMINANT

OIMENSICN IFIVOT(25),ALISIZELJSIZE)+INDEX (25,20 ,PIVOT (25}
EQUIVALENGCE (IROW,JROW), (ICOLUM,JCOLUM) 4 (AMAX,T,SHAP)

10 DETERM=1.0
15 D0 20 J=1,N
20 IPIVOT(J)=0
30 DO S50 I=1,N

INRPOOOL
INRPOOO2
INRPOCOD 3
INRPDOO &
INRPDOOS
INRPDWOB
INRPDGO?7
INRPDOO B
INRPDOO9
INRPDCLO
INRPDG11
INRPDG1L2
INRPOOL3
INRPOC1LI G
INRPDOLS
INRPDGLE
INRPDOL?
INRPOOLS
INRPDOL 9
INRPOG20
INRPOO21
INRPDO22
INRPDO23
INRPOG24
INRPDE25
INRPDO26
INRPOO27
INRPDG28
INRPDO29
INRPDO3O
INRPDO3L
INRPOG32
INRPDO33
INRPOG3&
INRPDBO3S
INRPDO36
INRPOG37
INRPDO3 S8
INRPDC39
INRPOGY O
INRPOUG L
INRPDOWZ
INRPDGL3
INRPOOG4 4
INRPDOGS
INRPDO4O
INRPOO47

INVROOO L
INVROOO2
INVROCO3
INVROGO&
INVRGOOS
INYROOOS
INVROOO?
INVROOO S
INVROQOD9
INVROOLO
INVRGOLL
INVYROGL2
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50
60
70
11
85
100

- 185
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13¢

140

i5¢0
160
200
260
270
320

336
340
350

380
39¢
L5 G
420
438

450
556

600
610
620
63C
640
650
660
7085
710
740
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SEARCH FOR FIVOT ELEMENT

‘AMAX=D, 3% ICOLUN=0

CO 185 J=1,N

IF (IPIVOT(J)-1) 60, 105, 60

00 100 K=1,N

IF (IPIVOT(K)=1) 80, 100, 740
IF(ABS(ANAX)=ABS(A(J»K))I85,100,100
IROR=J $ ICOLUM=K § AMAX=A(J,K)
CONTINUE

CONTINUE
IPIVOTC(ICCLUN) =IPIVOT (ICOLUM) +1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF (IROW-ICOLUM) 140, 260, 140
OETERM==DETERM

D0 200 L=1,N

SHAF=A(IROH,L) ¢ ACIROH,L)I=ACICOLUM,L)
ACICOLUM,L)=SHAP

INDEXt{Ig1)=1R0OW

INDEX(I,2)=ICOLUN ¢ PIVOT(I)=ACICOLUM,ICOLUM}

DETERM=0ETERM*PIVOTI(I)

BIVIOE PIVOT ROW BY PIVOT ELEMENT
ACICOLU¥, ICCLUMI=1.0

B0 350 L=1,M
AC{ICOLUKM,L)=A(IGCOLUM,L)/PIVOT(I)

REDUCE NON~FIVOT ROWS

DO 550 Li=1,N

IF(L1-ICOLUM) 400, S50, 400
T=A{L1,ICCLUM)

A(L1, ICCLUMI=0.0

00 450 L=i,yM
ALL1yL)=ACL1,L)~AUICOLUN,L)*T
CONTINUE

CONTINUE

INTERCHANCGE COLUMNS

00 710 I=1,N

L=Neti-I

IF (INDEX{L,1)-INDEX(L,2)) 630, 710, 630
JROW=INCEXtL,y1)

JCOLUM=INDEX{L,2)

00 705 K=1,4N

SHAP=A(KyJRCH) & A(KyJROHI=A(K,JCOLUM)
CONT INUE

GCONTINUE

RETURN $ END

$ A(KyJCOLUMI=SHAP

PROGRAM LEVXNG(OUTPUTyPUNCHy TAPESG=OUTPUT,,TAPE7=PUNCH)

INVRGO13
INVROOLS
INVROGLS
INVRGO16
INVROOL7
INVROO18
INVRO019
INVR0G20
INVROG21
INVROO22
INVROO23
INVROO2 4
INVRO025
INVRO026
INYRO027
INVRG028
INVRO029
INVROO30
INVROD31
INVRGQ32
INVRO033
INVROO3 G
INVROO3S
INVROO36
INYRO037
INVROO38
INVROQ3 9
INVROO4O
INVROG4 L
INVROOGL2
INVRGO4 3
INVROO %4
INVROO4S
INVROO46
INVROO47
INVROOLS
INVROOG9
INVROOSO
INVROO51
INVRGO52
INVR0O0S 3
INVROOS 4
INVROOSS
INVRO056
INVROOS57
INVROGS 8
INVROO59
INVRO060

LEVXG0O01
LEVXGO002

PROGRAM TO COMPUTE SPECIAL CASE LEVEL CROSSING FREQUENCIES OF THE NON-LEVXG003
GAUSSIAM MOCEL FOR GIVEN LIST OF R FARAMETER VALUES.

INPUT DATA - NOMDE (PROGRAM IS CONTROLLED THROUGH DATA STATEMENTS)

GCMMON /CCR/ C1(8,8),02(8,8),C3(8,8),C4(8,8),NN,ISIZE,DETA, DETB,
1C(320)

DIMENSICN X(8192),S(1024), INV(1024),M(3),0F(2),0X(2),TITLE(S)

OIMENSICN RARRAY(6)

LEVXGOD »
LEVXGA4S
LEVXGO06
LEVXGOO7
LEVXG0D08
LEVXG009
LEVXGQ10
LEYXGat1
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GOMPLEX SUM,Al64,64) § LOGICAL PNCH LEVXG60L2
EQUIVALENCE(X(1),A(1,1)) LEVXG01 3
IFS AND M AKE VARIABLES USED BY FFT - LEVXGOL &
DATR IFSoM/146564908/ C . . LEVXGO0LS
RARRAY CONTAIANS THE R PARAMFETER VALUES TO BE USED © LEVXGO16
BATA RARRAY/1090e9e5967591633333333334247 ) LEVXGOL17
NCASE IS THE MUFPBER OF R PARAMETER VALUES TO BE USEDy oLE.S LEVXGO018
DATA NCASE/1/ . LEVYXGO01L9
BX0S IS INCREFEMNT OF TABULATION (IN STANDARD DEVIATIONS)? LEVYXG020
NTAB IS NUMEBER CF TABULATED VALULS DESIRED ) . ’ LEVXGG21
BATA DXCS,NTAB/ 2,41/ LEVXGO22
ISIZE IS SIZ2E OF MATRICIES USED B8Y INVR LEVXG023
DATA ISIZE/R/ LEVXG024
PNCH IS LOGICAL VARIABLE, IF SET TRUE RESULTS ARE PUNCHED ON CAROS LEVXGO25
DATA PNCH/eFe/ LEVXGD26
C11,012, AND C13 ARE CONSTANTS USED IN NUMERICAL INTEGRATION OF THE LEVXGQ27?
JOINT DENSITY FUNCTION LEVXG028
DATA C11,C12,C13/7.6388888889E~03,=6.4583333333E~-0295.569L404L44L4LLE~LEVXGD29
icis LEVXG030
DATA TWCPI2/19.,739208802/ LEVXGG31
LEVXG032
D0 140 NRATIO=1,NCASE LEVXGE33
R=RARRAY(NRATIO) LEVXGO34
GENERATE TITLE ARRAY TO ACCOMPANY QUTPUT LEVXG03S5
ENGCDE(B0,S,TITLEIR LEVXG036
S FORMAT (* LEVEL CROSSING FREQUENCY OF THE NON-GAUSSIAN MODLEVXGQO3?7
1ELy R=¥,F7,7,* *) LEVXGG38
CONSTYRUCT CCRRELATION ANO FUNCTIONAL OEPENDENCE MATRICIES LEVXGE39
NN=2 ¢ 1IF (R.LE.Q+)NN=0 LEVXGO4Q
C1(1,1)=C2(1,1)=R/SART (1, +R**2) LEVXGGG L
Ci€2,1)=01(1,2)=0211,2)=02(2,1)=0. LEVXGO42
C3ti,1)1=1, ¢ C€3(2,2)=C3(2,1)=C3(1,2)=0, LEVX6043
CuC1,11=C4(242)=0s $§ CuLl1,2)=Ch(2,1)=1, LEVXGO4 4
S1G62=147(14 #R**2) LEVXGO4S
LEVXGO046
CODING USED HERE IS FOR U~GUST COMPONENT UNIVERSAL CURVES LEYXGO0L4T7
C1(2,2)=C1€1,17/2, $ C2(2,2)=C2(1,1)/2. % S262=5162 LEVXGO4WS
LEYXGO049
CODIKNG FOR THE V=W GUST UNIVERSAL CURVES HOULD BE LEVXG0SO
C1(2+2)=C1€252)/72s $ (C2(2,21=C2(141) ¢ S262=1.5%S516G2 LEVXGG51
LEVXG052
S12=S16G2+C111,1)1%C2(1,1) LEVXGD53
$22=S2G2+C1(1,11*C2(2,214C1(2,2)%C2(1,1) LEVXGOS Y,
IF (NNeNE«D) HRITE (653C) ((CLII9J)9J=1,2),I51,2)9((C2(IsJ) »J=1,42) LEVXGOS5S
1,I=1,2) LEVXGE56
30 FORMAT (L1H1,5X,*COVARIANCE MATRICIES OF FIRST AND SECONO*,/, LEVXGGS7
16Xy *GAUSSIAN VECTORS ARE*,/,(6Xy2E1L43)) LEVXGCS5 8
IF (NNeNEoO) HWRITE (6931) ((C3(I+J)9J=1+2)41=1,2), ({CG(I,J)J=1,2)LEVXGLS59
1,1=1,2) LEYXGEG60
31 FORMAT (1HO,5X,*FUNCTIOCMNAL RELATIONSHIP MATRICIES FOR FIRST*,/, LEVXGLG1
16Xy *AND SECCND TRANSFORM VARIABLES ARE®,/,(6Xy2E10.3)) LEVXG062
HRITE (€£,35) R LEVXG063
35 FORMAT (1HD,5Xy*R PARAMETER =*%*,F6,3) LEVXGOb 4
LF IPNCH) HWRITE (7,40) R LEVXG065
40 FORMAT (*F =¥%*,F6,3) LEVXG066
LEVXGO067
GENERATF CHARACTERISTIC FUNCTION LEYXG068
56 CALL INVRS(ANS,F1,F2) LEVXG069
WRITE (6,54} DETA,DETB LEVXGOC7 @
54 FORMAT (L+HD,5X,*DETERMINANTS OF COVARIANCE MATRICIES®,/,6X,*DETA =LEVXGG71
1.’E12|59/QGX9’DETB =%,FE12.5) LEYXNGOT 2
57 DX(1)=43I*SQRT(S12) § DX(2)=,3*SQRT(S22) LEVXGO73

M1=2%%M(1) € M2=2%*NM(2) LEYXGOQ7 4
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DF(1)=1.70X(13/M1 € DF(2)=1./0X(2)/ M2
‘HRITE (69102) DX,0F

102 FORFPAT (1HO,5Xy*X INCREMENTSE OX(1) =%,E44.7y* OX(2) =% E14sT7y/y

16Xy *F INCREFENTSS DF(1) =%3E14479* OF(2) =%,E14,7)
OFOF=DF (1) *EF (2}
S1G2==S1G2*THOPIZ2 $ S262==-S2G2*THOPI2
AC(141)=CHFLX(1490s) $ F1=DF(1) § F2=0,
FL1=FLOAT (1-M1)*0F (1)
L D0 200 I=2,M1
CALL CF2(ANS,F1,F2) § ANS=ANS*EXP{S1G2%F1%*2)
CALL CFZUANS1,F11,F2) ¢ ANS=ANSH+ANSL®*EXP(S1G2%F11%*2)
AlT+1)=CMPLX(ANS,0.) $ F11=F11+0F(1)
200 F1=F1+DF (1)
Fi=0e § .F2=0Ft2) $ F22=FLOAT(1~-M2)*DF(2)
D0 300 J=E2yM2
CALL CFZUANS,F1,F2) § ANS=ANS*EXP(S2G2*F2%*2) ]
- CALL CF2(ANS1,F1,F22) % ANS=ANS+ANSL®*EXP (S2G2*F22%+2)
AlL,J)I=CMPLXIANS,0.) $ F22=F22+0F(2)
300 F2=F2+DFL2)
- F11=FLOAT(MII*DF(1) $ Fi=0. $ M22=H2/2#1
00 4190 I=2,n%
F1=F1+0F(1) $§ FLi=F11-0F(1)
F2=0s $ FZ2=FLOAT(M2)*DF(2)
D0 400 J=2.M22
F2==F2+0F12) § CALL CF2CANS,F1,F2)
ANS=ANS*EXP(S1G2¥F1%%2+S2G2*F2%*2)
F2==F2 & CALL CF2{ANS1,f11,F2)
ANS=ANS+ANSI*EXF(S1G2%F11*%24S2G2%F2%+2)
F22==F22+CF{2) $ GCALL CF21ANS1,F1,F22})
ANS=ANSHANSI*EXF(S1G2*¥F1¥¥24S2G2%F 22++2})
F22==F22 $ CALL CF2(ANS1,F11,F22)
ANS=ANS+ANSI®*EXP(S1G2¥F11*%2452G2%F22**2)
A(IQJ)=CHFLX(ANS’0-'
40c ﬂ("152'19H2*2°J,=CHPLX(ANS'O.’
410 CONTINUE
HRITE (6561) (A(Jye1),J=1,M1)
HRITE (6962} (A(1,J)9J=1,M2)
HRITE (69€2) (A(JyJ)yJ=1,4M2)
61 FORMPAT (LH1,5X,#FIRST RCH, FIRST COLUMN, AND DIAGONAL OF*,/,
16X, *JOINT CHARAGTERISTIC FUNCTION*,/,(5XyB8E10.3))
62 FORMAT (1M ,/,1(5%,8E10.3))
c
C FOURIER TRAMNSFORM TC OBTAIN PROBABILITY DENSITY
DO 71 J=1,38192,2
71 X€JI=XUJ)*OFDF
CALL FFTIUX4MyINV,S,IFS,IFER)
IF (IFER.EQ.Q) GO TO 73
WRITE (6,72) IFER §$ STOP
72 FORMAT (1HQ45X,*FATAL ERROR IN FFTRS2, IFER =%*,15)
c
C INTEGRATE TC COBTAIN LEVEL CPROSSINGS
73 Cix=C11*DXx¢2) § C2X=C12*DXt2) § C3IX=C13*DXt2)
HRITE (6974) (A(JS91)yJ=1,M1)
HRITE (6962) (Al19J)J=1,M2)
HRALITE (6562) (ALJ,J)yJ=1,M2)
74 FORMAT (1H145X,*FIRST ROW, FIRST COLUMN, AND DIAGONAL OF*,/,
16Xy *JOINT PROBABILITY DENSITY*,/,(5X,8E18.,3))
Xe=te § M21=N2/72%¢1 £ Hi1=M1/2+3
00 80 J=1i,M2%
00 75 I=1,M11
75 A(IJI=8(1,4)%X2
80 X2=x2+40x(2)
N21=M2/2-2

LEVXGG7 S
LEYXGO07 6
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LEVXGO738
LEYXGO079
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DO 36 I=1,MN1i LEVXG138
SUM=CIX*(~A(I,3)+ATI,4)=A(T,2}¢A(I,5))4C2X* (ACT91)=ACT,2) +ACI,3)4% LEVXG139

1ACI 4))+CIX¥(A(I,1)#2.%A(T,2) +ALI, 3} LEVXG160

00 B85 J=1,M21 LEVXG141

85 SUM=SUM+CIX*(A(IsJ)¢A(I5J¢5))+C2X*(A(IJt1) ATy J¢4))+CIX*(ALI,J#2LEVXGLL2
11+A(I,0+3)) LEVXG163
XCII=FLCAT(I-1)*DX(1) LEVXGih&

86 S(I)=REAL(SUM) LEVXG14S
WRITE (6587) (X(I)4SC(I)yI=1,M11) LEYXG14b6

87 FORMAT C1H1,5X,*COMPUTED VALUES OF X AND N(X)*,/, (4X,2E15.7)) LEVXG147

c LEVXG148
C INTERPOLATE TC FIND LEVEL CROSSINGS AT SPECIFIED VALUES OF X LEVXG169
X1=3. § XZ=0. $ DIVISR=S(1) LEYXG150
DX1=DXOS*SQRT(S12) § M21=M2/2+1 $ NINDEX=1 LEVXG151

WRITE (6+4S0) TITLE LEVYXG152

90 FORMAT (1F1,36X,*LEVEL CROSSINGS¥,/+5XyB8A10,/,/+16%X,*DIMENS IONAL LEVXG453
AINON=DIMENSICNAL CROSSINGS PER CROSSINGS PER*,/519Xs*LEVEL*,10Xy LEVXG154
2*LEVEL®,9Xs*UNIT TIME*,u4X,*ZERO CROSSING®,/,21X,*X*,10X,*X/SIGMA XLEVXG155

3*,7) LEYXG156
D0 105 I=1,NTAB LEYXG157

91 IF (X{NINDEX)-X1) 92,99,93 LEVXG158
92 NINCEX=NIMOEX#1 $ IF (NINDEX-M21) S1,91,150 LEVXG159
93 NINCEX=NINDEX=-1 LEVXG160
H= (X1=-X (NINDEX)) /DX (1) LEYXG161
FI3=S(NINCEX) § FIL=SININDEX#1) ¢ FI5S=S(NINDEX+#+2) LEVX6162
FI6=S(NINCEX+3) $§ IF (NINDEX=2) 9%4596,97 LEVXG163

94 IF (NINDEX-1) 159,95,96 LEVXG164
95 FI1=FI5 ¢ FI2=FI4 § GO TO 98 LEVXG165
96 FI1=FI3 ¢ FI2=S(1) & GO TO 98 LEVXG166
97 FI1=SININCEX=2) T FIZ2=SININDEX~-1) LEVXG1ib7
98 FLl==FI1PH¥(F¥¥2=1,) ¥ (H=2,) ¥ (H=3:)/120 ¢FI2*H¥(H=1,) *(H*¥2=4,)* LEVXG168

L UH=301/24e=FI3* (H¥¥2=4 ) * (H¥*2-L4 ) *H-34) /12, +FIL*H*(H+1,)*» (H**2 LEVXG169
2=4e)*(H=3:1/12:~FIS*H* (H¥¥2=1 ) *(H$2.) * (H=3: )/ 24 tFIO*H¥(H**2=4,) LEVXG170

3% (H**2-1,)/120. LEVXG171

GO 70 184 LEVXG172

99 F1=S(NINOEX) LEVYXG173
106 F2=F1/DIVISR LEVXG17 &
WRITE (€4120) X1,X%X2,F1,F2 LEVXG17 S

IF (PNCH) WFITE (7,121) X2,F2,4F1 LEV¥XG176

IF (F2.LEe1.E-10) GO TO 140 LEVXG177

- X1=x1+0X1 LEVXG17 8
165 X2=Xx2+0X0S LEVXG179
120 FORVPAT (1M 315X,E10e395X5E10e396X,EL10.3435%X,E10.3) LEVXG180
121 FORFMAT (3E2(.10) LEVXG181
140 CONTINUE LEVXG182
150 sSToP § END LEVXG183

PROGRAM POISTU{INPUT,QUTFUT,PUNCH,TAPES=INPUT,TAPES=0UTPUT,TAPE7= PDISTO01

1PUNCH) PDISTOD 2
c PDISTO03
C A PROGKEAM TC GEMERATE PROBABILITY DISTRIBUTIONS FOR THE NON-GAUSSIAN PDISTU04
C MODEL OR THE RESPONSE OF A LINEAR SYSTEM TO THE MODEL. PDISTO0S
c POISTUDG
C INPUT DATAS PDISTOOG7
C TITLE(I),1=1,9 (8A10) DESCRIPTIVE TITLE TO ACCOMPANY OUTPUT PDISTOD 8
c SR2 (E20.10) SYSTEM RESPONSE VARIANCE FOR UNIT VARIANCE INPUT PDISTOO09
Cc SR2=1.0 FOR TURBULENCE MOODEL DISTRIBUTION CALCULATIONS PDIST410
c NE¥ (I2) WNUMBER OF NCN=-GAUSSIAN EIGENVALUES TO BE USED (<LE.20) PDISTO11%
C NEV=1 FOR TURBULENCE MODEL DISTRPIBUTION CALCULATIONS PDISTO12
C EVEI) yI=1yNEV (E20.10) NON-GAUSSIAN EIGENVALUES FOR RESPONSE TO PDISTG13

s s
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UNIT VARTANCE MODIFIED BESSEL FUNCTION INPUT. E£VIL)=4. FOR
TUPBULENCE MODEL DISTRISUTION CALCULATYIONS,

R (F1G.5) SIGMA RATIO OF THE TURBULENCE MODEL (R.GE.0, R=0
FOR GAUSSIAN MODEL, R=INF FOR MODIFIED BESSEL FUNCTION MODEL.,
IN ORDER TO RETAIN COMPUTATIONAL ACCURACY R SHOULD BE LESS
THAN 2)

IF THE SUM OF THE NON-GAUSSIAN EIGENVALUES SQUARED IS FOUND TO BE
MORE THAN 5 PERCENT GREATER THAN THE SYSTEM RESPONSE VARIANCE, SR2,
EXECUTICN IS ENDED.

IF THE SUM IS FCUND TO BE LESS THAN THE RESPONSE VARIANCE, AN
INDEPENDENT GAUSSIAN PROCESS IS INTROODUCED TO CORRECT THE DEFICIT.

PROCGRAM PRINTS THE RESPONSE PROBABILITY DENSITY FUNCTION IN BOTH
NORMALIZED ANC UNNORMALIZED FORM IN INCREMENTS OF DX®*SRZ2 FROM ZERO
T0 203*Dx*SR2, OX IS GIYEN IN DATA STATEMENT BELOM.

RESULTS ARE PUNCHED ON CARDS IF LOGICAL PARAMETER PNCH IS SET TRUE.

COMMON /7 /7 S(128),INV(128),P0(1026)
DIMENSICN M{(3),PHI(1026)
OIMENSICN TITLE(8),EVI20),EV2420)
EQUIVALENCE (PD(1),PHI(1))
LOGICAL PNCH

RESULTS ARE PUNCHED ON CAROS IF PNCH IS TRUE
DATA PNCH/.Fe/
OATA PI22/3C.47861760%/
DATE M,1FS/Ss0,0851/

MINIMUN VALUE OF M(1) FOR DX OF .05 AND XMAX OF 10, IS 9 (512)
DATA OX/7.05/

DX*SR2 1S THE IMCREMENT OF EVALUATION

PDISTOLYG
POISTCLS
POISTOLSG
PDISTG17
PDISTGL18
PDISTOL9
POISTO2¢
PDISTO21
PDISTO22
POISTO23
POISTO24
POISTO2S
PDISTO026
PDISTO027
POISTO28
PDISTO29
POISTE3O
PDISTG31
POISTO32
POISTO33
PDISTO34
POISTO3S
PDISTO36
POISTO3?7
POISTO3S
POISTO39
POISTO40
PDISTU41
POISTOL2
POISTOL3
POISTO&4

OATA €1,402,03/7.6388888883E-03,-6,4583333333E-02,5.569444046404E-01/P0ISTO4S
€CLl4G2,C3 ARE COMSTANTS USED IN NUMERICAL INTEGRATION OF PROB, DENSITY POISTO46

REACQ INPUT GATA
15 READ (Ss1) TITLE,SR2,NEV
IF (EOF,5) 400,16
16 READ (542) (EV(I),I=14NEV)
READ (5,3) R
1 FORNAT (8210,/,E20.10,7,12)
2 FORNAT (EZ20.10)
3 FORMAT (F10.5)

WRITE INPUT DATA
WRITE (65113 TITLE,SR2,NEV,IEV(I),I=1,NEV)
HRITE (6412) R

PDISTOL47
POISTOGS
PDISTO049
POISTESYO
POISTO51
POISTO0S52
PDISTO53
PDISTO054
POISY055
PDISTO56
PDISTO57
POISTOS 8
POISTLS9

11 FORVAT (1H1,5XyBALD 4/ 4/ 96X ,*VARIANCE =%,F1045,/,6X,*NUMAZR OF NON-POIST(6Q
1GAUSSTIAN EIGENVALUES =%,12,/,6X,*EIGENVALUES ARES*,/, (12X,E15.8)) PDISTG6H1

12 FORMAT (1HD,5X,*SIGMA RATIO OF TURBULENCE MODEL =%*4F10.5)

COPY EIGENVALLES TO WORKING ARRAY, CHECK SUM OF SQUARES
SE2=0.
DO Z0 I=1,NEV
EV2UI)=EV(I)**2
20 SE2=SE2+EV2(I)
IF (SE2.LE.SR2) GO TO 100
IF (SE2.LT.SR2*1.05) GO TO 90

SUM OF SQUARES IS TOO LARGE
WRITE (6530) SR2,SE2

POISTO62
PDISTO063
PDISTO6 4
POISTCHS
PDIST066
PDISTO67
PDISTO68
PDISTO069
PDISTG79
PDISTU71L
PDISTO72
PDISTO73

30 FORPAT (1HD45Xy*~==~==ERROR IN DATA, SUM OF SGCUARED EV(I) NORE THANPDISTO7 4
1 5 FEPCENT GREATER THAN SR2%¥,/,6Xy¥SR2 =%,E12.55/96Xy*SUMN OF EVY(I)PDISTG75

2 SQUARED =%,£12,5)

PDISTO76
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) G0 T0 15 . PDISTO?7
c POISTA7 S
C.SUM OF SQUARED EIGENVALUES EXCEEDS SYSTEM VARIANGE BY LESS THAN 5 PCNTPDISTO79
.. 9L SE2=SE2/Sk2 : PDISTO80
.. B0 <2 I=1,NEV : PDISTG8Y

. EN2U(I)=EV2(I)/SE2 POISTO82

92 EV(I)=SQRTL(EV2(I)) ] ' PDISTOB3
WRITE (6,94) SEZ’(EV(I),EVZII)oI‘ivNEU) . PDISTO8 4L

"9k FORFAT (1H0,5X,*SUM OF EIGENVALUES SQUARED EXCEEDS VARIANCE BY A FPDIST08S
"1ACTOR OF*,FEs59/96X,*EIGENVALUES WILL BE SCALED TO GIVE CORRECT VAPDIST(86
2RIAMNCE*,/,6X,*SCALED EIGENVALUES AND SQUARED EIGENVALUES ARE*,/, PDIST087

I(6X,2FE15.,7)) . POISTO88
SE2=SR2 , POISTO89

c POISTC90
C SCALE GAUSSIAN AND NON=-GAUSSIAN VARIANCES ACCOROING TO SIGMA RATIO POISTu91
C OF TURBULENCE MCDEL PDISTO92
100 RC=R*%¥2/(1, ¢R*¥*2) PDISTH93
SES2=SE2*RC $ SE2G=(SR2-SE2)*RC POISTO94G

. EVG2=SR2/ (1, +#R¥*2) #SE26 PDISTO9S

C EVG2 IS THE VARIANCE OF THE GAUSSIAN PORTION OF THE SYSTEM RESPONSE PDIST096
C INCLUDING CCRRECTION FOR NEGLECTED NON-GAUSSIAN E£IGENVALUES _ POISTO97
c PDISTO98
SC=1./(EVG2+SES2) $ SE=SES2*SC $ SG=EVG2#SC PDISTE99

WRITE (645138) SE2+SR2+SES2+EVG2+SE+SG POIST100

130 FORMAT (41H0,5X,*SUM OF EIGENVALUES SQUARED =%,E15.74/357356X, POIST101
+%FOR VARIANCE OF*,E15479/796Xs*NON-GAUSSTAN VARIANCE =%,E15.7,/ 96Xy PDIST102
2*GAUSSIAN VARIANCE INCLUDING CORRECTION FOR®,/.6X,*NEGLECTED EIGENPDIST103
IVALUES =%,E15.75/4/96X,*FOR TOTAL VARIANCE OF UNITY*,/,6X,*NON=-GAUPDIST104
4SSIAN VARIAMCE =%*,E15.74/96Xs*GAUSSIAN VARIANCE INCLUDING CORRECTIPDIST10S

SON FOR*4./,6Xs*NEGLECTED EIGENVALUES =%,E15,7) PDIST106
_SC=SC*RC PDISTAO?

_ 00 135 I=1,NEV POIST108
135 EV2CIVI=EV2{1)*SC PDIST109
HRITE (6,137} (EV2(I),I=1,NEV} PDIST1410

137 FORMAT (1HO0,5X,*SQUARED EIGENVALUES SCALED TC GIVE CORRECT NON-GAUPDIST111
1SSIAN*,/,6X4*CONTRIBUTION TO UNIT VARIANCER*4/,5(6X4EL15.7)) PDIST112

C GENERATE PESPCNSE CHARACTERISTIC FUMTION PDIST113
EVG2=S6/2s $ F=0, $ DF=1./70X/2.%*HI(1) $ NPTS=2%3(M(1)+1) PDIST114

00 150 I=1,NPTS,2 PDIST115
F2=PI22*F¥*2 § CFR=1. POIST116

D0 140 J=1,NEV PDIST117

140 CFR=CFR/ (1.+EV2(JI*F2) PDIST118
CFR=SQRT(GFR) § CFR=CFR*EXP{(=EVG2*F2) PDIST119
PHI(I)=CFR ¢ PHI(I+1)=0. PDIST120

150 F=F+DF POIST121

. C PDIST122
C TRANSFORM CHARACTERISTIC FUNCTION PDIST123
CALL FFTRS(PHI,OF y0XyM,INVsSyIFSyIFERD PDIST124

IFsS=2 POIST12S

IF (IFER.EQ.0) GO TO 210 PDIST126

WRITE (6420G6) IFER §$ STOP POIST127

200 FORMAT (1HO,*~===ERROR IN FFTy ERROR FLAG =¥,I12,/,5X,*RESULTS INVAPDIST128
1LID FOR THIS CASE¥*) PDIST129

c’ PRISTi30
C INTERPOLATE DENSITY FUNCTION TO OBTAIN FINAL RESULTS POIST131
210 IF (PNCH) WRITE (7,219) TITLE PDIST132
219 FORMAT (3210) PDISTL133
WRITE (6,220) TITLE PDIST134

2208 FORWAT (1KH1,5X,8A18) POIST13S
WRITE (6,221) PDIST136

221 FORMAY (1HO,S5Xy*NORMALIZED®*,4X,*STDIZED*y4X,*DISTRIBUTION*,5X, PDIST137
1¥UNNORMALIZED® 33Xy *NONSTDIZED* 9/ 97Xy *VARIABLE*y3X,*PROBAIILITY*, PDIST138
2uXy*FUNCTION®,9X, *VARIABLE* S Xy *PROBABILITY*,/ 47X, *X/SIGHNA X*, PDIST139
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34X, PDENSTTY®, 27X, *X® 340 X, *DENSITY®,/)
BX1=DX*SRZ $ (D=5 $ X=0. $ X1=0,
LINCNT=0 § N=INT(104/0X+.93)%1 $ IF (N.GT.NPTS/&) N=NPTS/4
00 300 I=4,N
J=2¥I-1 § UPD=PD(J)/SR2
WRITE (64222) XsPD{J),CD,X1,UPD
222 FOREAT (1M 7XyF6e354XsE204353XpE12.5,6X9E100354XpE10e3)
IF (PNCH) WRITE (7,223) X,P0(J),CDyXtsUPD
223 FORKAT (SE1€.8) ' _
LINCNT=LINCNT ¢4 _
LISTING PPOCUCEC AT 51 LINES PER PAGE
IF (LINCNT.LT.51) GO TO 290 $ IF (I.EQeN) GO TO 15
WRITE (69220) TITLE
WRITE (64220) . . . . _
WRITE (65222) X,PDCJ),C0,Xi,UPD
LINCNT=1
290 IF tI-2) 291,292,293
291 CO=CD+(CL1¥PC(JI+6)+C2*PDII+2))*DX § GO TO 29%
292 CD=CO+{C1¥PC(J) +C2+P0(J=2))*DX § GO TO 294
293 CO=CD+{C1%P0(J=0) +C2¥PD (J=2)) *0X
29% CD=COH(CL*PCI(J+E) +C2*PDCJ+4) +CI*¥ (PDJ) +FD (J+2) ) ) 5DX
X=X#0X
300 X1=Xx1+0X1
GO T0 15
400 STOP $ ENO

PROCRAM RLEVX{INPUT,0UTPUT, PUNCHs TAPES=INPUT,TAPE6=0UTPUlI yTAPE?=

1PUNCH)

POIST140
POIST141
PDIST142
POIST143
POIST1kt%
PDISTL4S5
PDIST146
PDIST147
PDIST14 8
PDIST149
PDIST150
PDIST151
POIST152
POIST153
POIST154
PDIST155
PDIST156
POIST157
PDIST158
POIST159
PDIST160
PDIST161
PDIST162
PDIST163
PDIST164

RLEYX001
RLEVX002
RLEVXGO 3

PROGRAM TO COMPUTE LEVEL CROSSINGS/UNIT TIME OF LINEAR SYSTEM RESPONSERLEVXO0 %
TO NCON-CAUSSIAN MODEL. CROSSINGS/DISTANCE CAN BE OBTAINED By DIVISIONRLEVX00S

BY VMEAN TRUE AIRSPEED.

INPUT OATA

TITLE (8A10) OESCRIPTIVE TITLE TO ACCOMPANY QUTPUT

NPT (I2) NUMBER OF ABCISSAE POINTS AT WHICH EIGENFUNCTIONS ARE
TABULATED

NR1 (I1) NUPMBER OF EIGENSOLUTICNS DEFINING FIRST VARIABLE

ECIY 9 (XUJY yEFPUUSID JEFQUJ9 1) 9 J=14NPT) (45X4E20411,/9(3E25.410))

EIGENVALUE, ABCISSAE POINTS, P EIGENFUNCTION, AND Q EIGENFUNCTION

RESFECT IVELY AS PUNCHED BY GENERATING PROGRAM. REPEATED FOR
EACH OF THE NRi EIGENSOLUTIONS. (I=1,NR1})
S12 (F10.5) TCTAL VARIANCE OF FIRST VARIABLE
NR2 (I1) NUMBER OF EIGENSOLUTIONS DEFINING SECOND VARIABLE
ECI) s IXCIV 9EFPLI2I) oEFQUI9I) 4 J=14NPT) (U5X4E20e11) 474 (3E25.14))

EIGENVALUE, A3CISSAE POINTS, F EIGENFUNCTION, AND Q EIGENFUNCTION

RESPECTIVELY AS PUNCHED B8Y GENERATING PROGRAM. REPEATED FOR
EACE OF THE NR2 SIGENSOLUTIONS (I=1,NR2)

S22 (F1l.5) TCTAL YARIANCE OF SECOND VARIABLE

R (F10.,5) SIGrA RATIO OF TURBULENCE MODEL

NR1¢NR2 MUST BE LE.B, OTHERWISE REDIMENSIONING IS REQUIRED.
RESULTS ARE PUNCHED ON CARDS IF LOGICAL VARIABLE PNCH IS SET TRUE,

COMMON ZARRAYS/ E(8),EFP(4S5,8) 4EFQILU5,8) 9 XALL5) 3GLLL5)562(45),
1NPT ,NPOLY,COEFA(S)

COMFON SCCR/ C1(84+8),02(84+8),C3(8,8),C4(8,8) ,NN,ISIZE,QETA,DETB,
1Ct320)

DIMENSICN X (81923 9S(1024) 9 INV(1024)4M(3),0F (2)9DX(2)9A(6k,y564),
1TITLELB)

RLEVX006
RLEVX007
RLEVXGO 8
RLEVX009
RLEVX010
RLEVXO11
RLEVX012
RLEVXGL3
RLEVXG14
RLEVX015
RLEVX016
RLEVX017
RLEVXQLS
RLEVX019
RLEVX020
RLEVX021
RLEVX022
RLEVX023
RLEVX 024
RLEVX02S
RLEVX026
RLEVXG27
RLEYX 028
RLEVYX029
RLEVX030
RLEVXu3t
RLEVX032
RLEVYX033
RLEVXE3 4
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COMPLEX A,SUM £ LOGICAL PNCH RLEYX035
EQUIVALENCE (X(1),E(1),A(1,1)) RLEVX036
PNCH SET oF. SUFPRESSES PUNCHED QUTPUT RLEVX037
- DATA PNCH/.Fo/ RLEVX038
IFS AND M ARE VARIABLES USED B8Y SUBROUTINE FFT RLEYX039
OATA IFSyM/1,656,0/ RLEVX04O
DATA THCPI2/19.7392058802/ RLEVXubt
C11,C12,C13 ARE CONSTANTS USED IN NUMERICAL INTEGRATION OF JOINT RLEVXD42
PROBABILITY DENSITY FUNCTIOM RLEVXC43
DATA C11,C12yC13/7.6388288889E~039~Ce4583333333E~0295+5644ubbLE-RLEVXGhbL
1317 RLEVX0%5
DXO0S IS TABULATION INCREMENT (IN STD. DEVIATIONS OF THE RESPONSE) RLEVXQ46
NTAB IS NUMBER CF TABULATED YALUES TO BE COMPUTED RLEVX 047
DATA DX0SsNTAS/.2,417 RLEVX0& S
ISIZE IS OIMEMSION CF MATRICIES USED BY INVERSION ROUTINE INVR RLEVX(0&9
DATA ISIZE/ZB3/ RLEVX0S59
RLEVX4S L

READ INFUT QATA RLEVX052
1 FORFAT (I2,/75I1) RLEVX(G53

2 FORPMAT (45X ,E20411,/5(3E25414)) RLEVX05 &4

3 FORNAT (EZ0.11,/,11) RLEVXESS

4 FORMAT (EZ20.11,/+F10.5) RLEVX056

5 FORFAT (5210) RLEVX057
READ (5,5) TITLE RLEVX(058
READ (5,1) NFT,NR1 RLEVX059

IF (NR1.LE.O0) GO TO 7 RLEVX(60

00 6 I=1,NR1 RLEVXub1

6 READ (5,2) E(I) 3 (XA(JYSEFPCJSI)EFQII,I)5J=1,yNPT) RLEVX (062

7 REAT t5,3) Si12,NR2 RLEVX063
J=NR1+1 § NN=NR1+NRZ2 § IF (NRZ.LE.D) GO TO 9 RLEVX0b 4

00 & I=JyNN RLEVX06S5

8 READ (5,2) E(I) o (XALQJ)JEFP(JU,I)3EFQIJI) 9 =1,NPT) RLEVX066

9 READ (S,4) S22,R RLEVX067
RLEVX068

SCALE EIGENVALUES AND COMPUTE GAUSSIAN VARIANCES RLEVX069
CALL SCALE(EsNR1,NR2,5S1294S522,5162,5262+R,TITLE) RLEVXC70
RLEVXa71

GENERATE COVARIANGCE MATRICIES RLE¥X072
IF (NN.LE.D) GO TO 57 RLEYX073

D0 20 I=1,4NN RLEVXQ7 &
Ci1(I,I)=1. $ C2(I,I)=1., § I1=Ie} RLEVX07S5

DO 20 J=I1,KN RLEVX076

IF ((I-NR1)¥(J=-NR1)}} 10,11,12 RLEVXO077

10 CALL TINRPOTUCLI(I,J},I,J,1) & C1(J,I)=Ci(I,J) RLEVX078
CALL INRPOT(C2(I,J),I,Jy=-1) & C2(J,I)=C2(I,J) RLEVX879

Go To 28 RLEVX080

11 IF (I.EG.MR1) GO TO 10 RLEVX¢81
12 C1tJ,I)=0. & Cit(I,J}=0. $ C2{JyIV=0. § C2(I,4)=0. RLEVXGB82
20 CONTINUE RLEVXC83
WRITE (6521) TITLE RLEVX084

21 FORMAT (1H1,5X,*COVARIANCE MATRIX FOR P VARIABLES*,/,6Xy8A10) RLEVX(085
DO 25 I=1,NN RLEVX086

25 WRITE (6,530) (Ci(I,J)+J=1,NN) RLEVX087
30 FORFAT (L1H3,5Xy10F11.6) RLEYXC88
WRITE (6431) TITLE RLEVX089

31 FORFMAT (1HO,5X,*COVARIANCE MATRIX FOR Q@ VARIABLES¥,./96Xy8A18) RLEVX398
D0 35 I=i,NN RLEVXD91

35 WRITE (64530) (C2(I,J)9J=1yNN) RLEYX (092
RLEVX393

GENERATE FUNCTICNAL DEPENDENCE MATRICIES RLEVX094
36 IF (NRi.LE.0) GO TO 51 RLEVX095
I=1 RLEVX096

WRITE (6,400 TITLE,I RLEVX097



231

40 FORMAT (LHO SX,¥*FUNCTIONAL DEPENDENCE MHATRIX*,/,6Xy8AL0,/ 36X, *VARIRLEVX093S

1ABLE NO.*,1I2) RLEVX099
D0 5080 I=1,NR1 RLEVX100
C3(I,I)=ECI) ¢ Cull,I)=0. § TIi=Ist RLEVX101

DO 45 J=I1,MN RLEVX102
C3(IyJ)=8. $ C3tJyI)=0, $ CutI,NN=0. $ CHIIIyI)=0, RLEVX103

45 CONTINUE RLEVX10 &
50 WRITE (6,530) (C3(I,J)yJ=1yNRY) RLEVX105
51 IF (NR2.LE.D) GO TO 56 RLEVX106
I=2 % Mi=NMR1isl RLEVX107
HRITE (E,40) VITLE,I RLEVX1i0 8

DO 55 TI=M1,MN RLEVX109
C3(IyI)=0e §$ C&II,II=E{I) & TIi=Te&g RLEVX110

00 S3 J=I1+A0N RLEVXiLlL

- C3IyM)=0+ ¢ C3U4,I)=0, $ CutI,J)=0. $ C41JI,I)=0, RLEVX112
53 CONTINUE RLEVX11 3
55 HRITE (6930) (C&4(I,J)y J=M1lyNNI RLEVX114
IF (NR1.,LEC) GO TO 56 % ERRD=0, RLEVX11S

B0 €5 I=1,Nf1 RLEVX116

0O 65 J=M1isAN RLEVX11?

65 ERRO=ERRO#+CL(I,J)*C2(I,J)*C3(I,I)*¥CLlJyd) RLEVX11 8
ERRC=ERRD/SCRT(512*522) RLEVX119
WRITE (64€E6) ERRD RLEVYX120

66 FORMAT (1+0,5X+*CORRELATION COEFFICIENY OF RESPONSE AND ITS FIRST RLEVXiZ2i
1CERIVATIVE =%yE10434796X,*THIS COEFFICIENT SHOULD BE NUCH LESS THARLEVX122

2N 1.0%) RLEVX123

c RLEVX124
C GENERATE CHARACTERISTIC FUNCTION RLEVX125
56 CALL INVRS{ANS,F1,F2) RLEVX126
WRITE (6,54) DETA,DETS RLEVX127

54 FORKAT (LHD,5Xe*DETERMINANTS OF COVARIANCE MATRICIES*,/,6X,*DETA =RLEVX1Z28
1% ,E12.5,/+6X+*0ETB =%,£12.5) RLEVX129

57 DX(1)=,.2*SQFT(S12) & DX{(2)=,3*SQRT(S22) RLEVX130
M1=2%%NL1) £ M2=2%¥N(2) RLEVX131
DF(1)=1,/CX(1) /M1 ¢ OF(2)=1./0X(2)/M2 RLEVX132
HRITE (6,102) DX,DF RLEVX133

102 FORMPAT CL1HD ,SX,*INCREMENTSI®,/,6X,*DX 1) =% ,E14.7,5X,*DX(2) =¥, RLEVX134&
1E164 .79/ 96Xy *DF (1) =*yE104.795X9*0F(2) =¥ ,E14.7) RLEVX135S
DFOF=0DF (1) *CF (2) RLEVX136
S162=~S1GZ*THOPI2 § S262=-S2G2*THWOPI2 RLEVX137
A{1,1)=CHPLX{1s50.) § F1=DF(L1) § F2=8, RLEVX138
F11=FLOAT (1-M1)*DF (1) RLEVX139

00 20" I=2,v1 RLEVX140
CALL CF2(ANS,F1,F2) & ANS=ANS*EXP(S1G2¥F1*+*2) RLEVX1iG1
CALL CF2(INS1,F11,F2) 3 ANS=ANS#ANSL1*EXP(S1G2*%*F11**2) RLEVX142
A(I,1)=CHMPLX(ANS,0,) ¢ F11=F11#0DF(1) RLEVX143

200 Fi=F1+DF (1) RLEVX144G
F1=0,0 & F2=0F(2) § F22=FLOAT(1-M2)*DF(2) RLEVX1645S

00 200 J=2,M42 RLEVX146
CALL CF2UANS,F1,F2) $ ANSSANS*EXP(S2G2%F2%*2) RLEVX167
CALL CF2UANS1,F1,F22) % ANS=ANS+ANSL1*EXP(S2G2*F22%*2) RLEVX1i4 8
AC1+J)=CMFLX(ANS,0s) & F22=F22¢0F(2) RLEVX149

300 F2=F240F (2} RLEVX150
F11=FLOAT(MI1)*DF{1) § F1=0. $ M22=M2/2+1 RLEVX151

DO 410 I=Z,M1 RLEVX152
F1=F1¢DF(1) ¢ F1i=F11-DF(1) RLEVX153
F2=0s ¢ F22=FLOAT(M2)*DF(2) RLEVX15&

00 400 J=Z.M22 RLEVX155
F2==F2+0F(2) § CALL CF2(ANS,F1,F2) RLEVX156
ANS=AMS*EXP (S1G2*F1**2¢52G2*F2%*2) RLEVX157
F2==F2 § CALL CF2(ANS1,f1i1,F2) RLEVX158
ANS=ANS+AMSI*EXF(S1G2¥F11%%24+S2G2*F2%*2) RLEVX159

F22=-F22+LF(2) ¢ CALL CF2(ANS1,F1,F22) RLEVX160
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ANS=ANS4ANSI®EXPISLIG2¥FL¥¥2452G2%F22+*2)
F22=-F22 ¢ CALL CF2(ANSi,F11,F22)
ANS=ANS+ANSI*EXP(S1G2¥F11*+#2+5262%F22*%+%2)

RLEVX161
RLEVX162
RLEVX163

ACI,J)=CNPLX{ANS,0,)
400 A{M132-1,M242=-J)=CHPLX{ANS,0.)
410 CONTINUE
© HWRITE (6,61) tAlJy1),J=1,M1)
HRITE (6,€E2) (Atl,J)yJ=1,M2)
HRITE (65621 (A(Jyd)5J=1,M2)

RLEVX164
RLEVYX16S5
RLEVX166
RLEYX1i67
RLEVX168
RLEVX169

61 FORMAT (1H1,5X,*FIRST ROW, FIRST COLUMN, AND OIAGONAL OF JOINT CHARLEVX170

LRICTERISTIC FUNCTIQON®,/,(5X58E10.3))

62 FORMAT (1H »/79(5X,8E1043))

C
C FOURIER TRANSFORM TO OBTAIN PROBABILITY DENSITY

00 71 J=1,8192,2

71 XUN=X{(I*0FOF
CALL FFT{XyM; INV,S,IFS,IFER) §
HRITE (6,72) IFER

72 FORMAT (110 ,5X,*FATAL ERROR IN FFTRS2Z, IFER =%*,I5)

STOP

c
C INTEGRATE TC CBTAIN LEVEL CROSSINGS
73 CiX=C11*Dx12) § C2Xx=012*0X(2)
HRITE (6,74) (A(Js1)yJ=1,M1)
HRITE (€E,€2) (Al1,J)4J=1,42)
HRITE (64€62) (ALJyJ)sd=1,M2)

RLEVX171
RLEVXi72
RLEVX173
RLEVX17 4
RLEYX17S
RLEVX176
RLEVX177
RLEVX17 8
RLEVX179
RLEVX180
RLEVX181
RLEVX182
RLEVX183
RLEVX134
RLEVX185
RLEVX186

IF (IFER.EQ.0) GO TOo 73

$ C3x=C13*0X{2)

74 FORMAT (1F1,5X,*FIRST ROW, FIRST COLUMN, AND DIAGONAL OF JOINT PRORLEVX1837

18ABILITY CENSITY FUNCTION*,/,(5X,8E10.,3))
X2=0es $ MZil=MZ/2¢1 & M11=M1/2+43

00 28 J=1,M21
D0 75 I=1,Mi1

75 ACI,JI=A(I,J0%X2

8 X2=X24DX%(2) $ M2i=M2/2-2
DO 86 I=1,M11l

RLEVX188
RLEVX189
RLEVX190
RLEVX191
RLEVX192
RLEVX193
RLEVX194

SUM=CIXP (AT 3V +ALT L) =A(T2)+A(I45)) #C2X* (ALL 4y1)=AlI,20+A(143)¢+ RLEVX19S

1A(I4))+CIXPLA(T1)42.%A(I,42)+A(],3))

B0 85 J=1,M21

RLEVX196
RLEVX197

85 SUMN=SUM+C1IX*{AUI,J)+A(T,J¢50V+C2X*(A(T,J L) +ALT ,J44) ) ¢CIX*(A(I, J#2RLEVX198

11¢A(I,5¢3))
X{I)=FLOAT(I=-1)*0X (1)
86 SCIY=REAL(SUM)
WRITE (6,87) (X{I)oS(I)yI=1,M11)
87 FORMAT (1H1,5X,*COMPUTED VALUES

c
C INTERFOLATE TO FIND LEVEL CROSSINGS
Xi=0, $ Xx2=0. % OIVISR=S(1)

DX1=DXOS*SQRT(S12) § M2i=M2/2%#1 § NINDEX=1

WRITE (6,90) TITLE

RLEVX199
RLEVX2G0
RLEYX201
RLEVXZ02
RLEVX203
RLEVX2Q &
RLEVX285
RLEVX20 6
RLEVX207
RLEVX20 8

OF X AND NIX)¥,/43(4X,2E15.7))

AT SPECIFIEOC VALUES OF X

90 FORNAT (1H1,36X,*LEVEL CRNSSINGS*,/,5Xs8A10,/+/+16X,*DINENSIONAL RLEVX2089

1NON~DIMENSICNAL LCROSSINGS PER
2PLEVEL* 9%, *UNIT TIME*,4X,*ZEROC
ax, /0
go 105 I=1,NTAB
91 IF (X(NINDEX)=X1) 92,99,93

92 NINCEX=NIMDEX+¢L £ TIF (NINDEX-M21) 91,591,150

93 NINTEX=NINDEX=1 § H=(X1-XININDEX)¥/0X{1)
FI3Z=SININCEX) § FIu=S{NINDEX+1) § FIS=SININDEX+2)
FI6G=SI(NINDEX+3? $ TIF (NINDEX=2} 9%4,96,97

94 IF (NINDEX=~1) 150,95,96

95 FIi=FI5 ¢ FI2=FIs & GO TO 98
96 FIi=FI3 § FI2=S(1) ¢ GO TO 98
97 FIL1=SININCEX=2) § FI2=S(NINDEX~1)

98 F1==FI1*HY(H**2=1,)*(H~24)*(H-3,

CROSSINGS PER™,/,19X,*LEVEL*,10X, RLEVX210
CROSSING¥ 3/ 921Xy *X*310Xy*X/SIGMA XRLEVX211
RLEVX212
RLEVX213
RLEVX21 &
RLEVX21S
RLEVX216
RLEVX217
RLEVX21 8
RLEVX219
RLEVX220
RLEVX221
RLEVX222

17120 +FI2%H¥ (H=1,) ¥ (H**2=4 )" RLEVX223

S
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1CH=34) /24 ¢=FIT®(H® 821 ) ¥{H¥¥2 =l o ) ¥ (H=3,) /712, +FIL*H¥(H*1,)* (H**2 RLEVX224
2=Ue )P TH=34)/12¢4=FIS*H* (H¥¥ 2«1 ) * (H+2.)* (H=3,)/24¢ +FIG*H*(H**2~4,) RLEVX225

J*(H*®2-1,0/120. RLEVX226

GO To 100 RLEVX227

99 Fi=S(NINDEX) : ‘ RLEVX228
10G F2=F1/DIVISE ' RLEVX229
HRITE (64120} X1,X2,FLsF2 RLEVX230

IF (Fl.LE.1.,E-11) GO TO 150 RLEVX231
X1=x1+0Xx1 RLEVX232

105 X2=X2+4#0X0S © RLEVYX233
120 FORMAT (1H 415X9E10e395X,E100356X9E1063,5X9E1043) RLEVX234
150 STOF § END RLEVX235
SUBROUTINE SCALE(E,N1iy4N2,512,522,5162,S26G2sR,TITLE) SCALEgOi
SCALEJR2

SUBROUTINE YO SCALE EIGENVALUCS AND CALCULATE GAUSSIAN VARIANCES SCALEGO3
SCALEQD Y

€ = EIGENVALUE ARRAY SCALEQOS
Ni = NO. OF EIGENVALUES DESCRIBING FIRST VARIABLE SCALEUOS
N2 = NO. OF EIGENVALUES DESCRIEING SECOND VYARIABLE SCALEDO?
S12 = VARIAMNCE CF 1ST VARIABLE IN RESPONSE TO UNIT VARIANCE INPUT SCALEGOS
S22 = VARIAMCE CF 2ND VARIABLE IN RESPONSZ TO UNIT VARIANCE INPUT SCALECO9
S1G2 = GAUSSIAN VARIANCE OF 1ST VARIABLE SCALEGLO
S262 = GAUSSIAN VARIANCE OF 2ND VARIASBLE SCALEuL11
SCALEDL2

DIMENSION E(1),TITLEC8) SCALEG13
SCALEOLS

§$=S12 $§ N=Ni1 $ NO=1 SCALED1S

D0 100 I=1,2 SCALED16
SE2=0. $ IF (N.GT.NO) GO TO 9 §& S262=$ SCALEO17

IF (I.EQ.1) S1G2=S262 ¢ GO TO 60 SCALED1 3

9 DO 10 J=NC(,N SCALEQL9
10 SEZ=SE2+E(J)**2 SCALEG20
IF (SE2.LE.S)1GO TO 48 % 1IF (SE2.LE.S*1.05)G0 To 30 SCALEQ21
WRITE (6415) SE2,S4IsN § STOP SCALEQ22

15 FCRYAT (1H0,5X,*FATAL ERROR IN SCALE, SE2 EXCEEDS S BY HORE THAN SSCALE023
1 PERCENT®,/,6X,*SE2 =*,E15485/56Xs®S =%,E1548,/96Xy*1 =%,12,/,6X+*SCALEG2 4

2N =%,12) SCALED25

30 SE2=SORT(S/SE2) SCALEC26
DO 35 J=NO,N SCALEQ27

35 EC(II=ECJI*SEZ ¢$ SE2=S SCALEQ28
L0 S2GZ=S=SE2¥(R**2)/(1,#R*¥2) SCALED29
IF (I.CGe1) S162=S2G2 § SE2=(R**2)/(1,+R**2) & SE2=SQRT(SE2) SCALE030

00 50 J=NGQoN SCALEQ31

S0 E(JI=E(J) *SE2 SCALE032
60 NO=Ni#1 § N=NLi#N2 SCALED33
100 S=S22 SCALEQ3 L
IF (N.LE.C) E(1)=0. SCALEQ35
WRITE (E,110) TITLE $ J=1 § HRITE (6,115} J,S1G2,(E(I),TI=1,N1)SCALEQ36

110 FORMAT (4H1,SX,*RESULTS OF SCALING*,/,6X,8A10) SCALES37?
J=2 % HRITE (6y115) J,S26G2,(E(I),I=ND,N) T HRITE (6,12C) R SCALED3 8

115 FORFMAT (1HD,5X,*VARIABLE NQ.*,I25/y6X,*GAUSSIAN VARIANCE INCLUDINGSCALEG39
1 CORRECTICN FOR NEGLECTED EIGENVALUES =*yE12.5,7y6X,*SCALED EIGENYSCALEGHLO
2ALUES*,/ 4 (10X9E12.5)) SCALEUY1
120 FORVAT (1+H0,5X,*SIGMA RATIC OF TURBULENCE MODEL =%,F6.3) SCALEQAH2
SE2=0. SCALEDOG3

00 125 I=1,Nt SCALEGHG

125 SE2=SE2+E(I)**2 SCALEQ%S
S=SE2+S1G62 ¢ I=}% SCALEO46

WRITE (6513L) I,S12,SE2,S51G2,S SCALECH?
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130 FORMAT (1HO,5Xs*VARIANCE CHECKy VARIABLE NO.*yJ2,/,6X,*CORRECT TOTSCALEO4S
1AL VARIANCE =%,E12.5+/96X,*SUN CF SCALED EIGENVALUES SQUARED =#,EL1SCALEQ&9
22659796 Xs*GAUSSIAN VARIANCE =%*,E12.59/96Xy*TOTAL VARIANCE =%*,E12.5SCALEQ50

3) SCALEGS 1
SE2=0. SCALEDS52
D0 135 I=NO.N ' SCALEQNS3
135 SE2=SE2+E(II**2 ¢ S‘SEZ+5262 s I=2 SCALEQS &
WRITE (6,130) I,522,S£2,5262,S . . SCALEQSS

140 RETURN § END © SCALEDSS6



APPENDIX B
TABULATED FUNCTIONS

The purpose of this appendix_is to present tabulated values of certain
'esults which were presented in graphic form within the main body of this
report. Specific results to be presented ére:

Table Bl - standardized probability densities of the non-gaussian
turbulence model for various values of the probability

distribution parameter R

Table B2 - probability distribution functions of the non-gaussian
turbulence model for various values of the probability

distribution parameter R

Table B3 - universal level crossing frequencies of the non-gaussian
turbulence model longitudinal component for various values

of the probability distribution parameter R

Table B4 - universal level crossing frequencies of the non-gaussian
turbulence model vertical and lateral components for

various values of the probability distribution parameter R.
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Table Bl,--Standardized probability densities of the non-gaussian

turbulence model for various values of the

probabi]%ty distribution parameter R,

(Graphical presentation of most of those data is given

in figure 15 on page 61 of this report,)

p(z|R)
R

x 0.0 0.5 0.75 1.0 1.33 2.0
0.0 3.989E-01 | 4.073E-01 | 4,234E-01 | 4.455E-01 | 4,792E-01 | 5.478E~01
.2 { 3.910E-01 | 3,986E-01 | 4,132E-01 | 4,.330E-01 | 4.623E-01 | 5.182E-01
.4 | 3.683E-01 | 3.738E-01 | 3.843E-01 | 3.976E-01 | 4,156E-01 | 4.409E-01
.6 | 3,332E-01 | 3.359E-01 | 3.407E-01 | 3.457E-01 | 3,496E-01 | 3.434E-01
.8 2.897E-01 | 2.894E-01 | 2.884E-01 | 2.854E-01 | 2.774E-01 | 2.514E-01
1.0 2.420E-01 | 2.391E-01 | 2.335E-01 | 2.248E-01 | 2.096E-01 | 1.786E-01
1.2| 1.942E-01 | 1.898E-01 | 1.814E-01 | 1.699E-01 | 1.530E-01 | 1.266E-01
1.4 | 1.497E-01 { 1.447E-01 | 1.356E-01{ 1.241E-01 | 1.093E-01 | 9.100E-02
1.6 | 1.109E-01 | 1.063E-01 | 9.802E-02 | 8.838E-02 | 7.748E-02 | 6.662E-02
1.8 7.895E-02 | 7.527E-02 | 6.885E-02 | 6.194E-02 | 5.510E-02 | 4.953E-02
2.0| 5.399E-02 | 5.153E-02 | 4.728E-02 | 4.309E-02 | 3.952E-02 | 3.724E-02
2.2 | 3.547E-02 | 3.420E-02 | 3.195E-02 | 2.997E-02 | 2.865E-02 | 2.822E-02
2.4 | 2.239E-02 | 2.208E-02 | 2.138E-02 | 2,094E-02 | 2.098E~-02 | 2.151E-02
2.6 | 1.358E-02 | 1.392E-02 | 1.425E-02 | 1.474E-02 | 1.549E-02 | 1.648E-02
2.8 (7.915E-03 | 8.603E-03 | 9.511E-03 | 1,046E-02 | 1.150E-02 | 1.266E-02
3.0 4.432E-03 | 5.240E-03 | 6.373E-03 | 7.476E-03 | 8.585E-03 | 9.764E-03
3.2 | 2.384E-03 | 3.160E-03 | 4.295E~03 | 5.375E-03 | 6.432E-03 | 7.548E-03
3.4 1.232E-03 | 1.896E-03 | 2.912E-03 | 3.884E-03 { 4.834E-03 | 5.848E-03
3.6 6.119E-04 | 1.135E-03 | 1.987E-03 | 2.817E-03 | 3.643E~-03 | 4.539E-03
3.8(2.919E-04 | 6.812E-04 | 1.362E-03 | 2.050E-03 | 2.751E-03 | 3.530E-03
4.0 1.338E-04 | 4.103E-04 | 9.382E-04 | 1.495E-03 | 2.081E-03 | 2.749E-03
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Table B2.--Probability distribution functions of the non-gauésian

turbulence model for various values of the probability

distribution parameter R.

(Graphical presentation of most of these data is given

in figure 150n page 61 of this report,)

P(-oz|r)t

8

0.0

0.5

R

0.75

1.0

1.33

2.0

o

OO LANODIIARLMNOOARNOOARNOODOPRPNO

N LD ELWWWWWRNINIMNINN et e
« . .

5.000E-01
4.207E-01
3.446E-01
2.743E-01
2.119E-01
1.587E-01
1.151E-01
8,076E-02
5.480E-02
3.593E-02
2.275E-02
1.390E-02
8.198E-03
4,661E-03
2.555E-03
1.350E-03
6.871E-04
3.369E-04
1.591E-04
7.235E-05
3.167E-05
1.335E-05
5.412E-06
2.112E-06
7.933E-07
2.867E-07

5.000E-01
4.191E-01
3.416E-01
2.705E-01
2.078E-01
1.550E-01
1.127E-01
7.878E-02
5.380E-02
3.578E-02
2.322E-02
1.474E-02
9.188E-03
5.643E-03
3.429E-03
2.069E-03
1.245E-03
7.491E-04
4.517E-04
2.735E-04
1.663E-04
1.016E-04
6.230E-05
3.840E-05
2.370E-05
1.470E-05

5.000E-01
4.160E-01
3.360E-01
2.633E-01
2.003E-01
1.481E-01
1.067E-01
7.511E-02
5.189E-02
3.535E-02
2.385E-02
1.602E-02
1.075E-02
7.237E-03
4,892E-03
3.324E-03
2.271E-03
1.559E-03
1.075E-03
7.433E-04
5.156E~04
3.585E-04
2.498E-04
1.744E-04
1.219E-04
8.530E-05

5.000E-01
4,117E-01
3.284E-01
2.538E-01
1.,906E-01
1.396E-01
1.003E-01
7.108E-02
5.000E-02
3.511E-02
2.472E-02
1.750E-02
1.246E-02
8.931E-03
6.436E-03
4.659E-03
3.386E-03
2.468E-03
1.803E-03
1.321E-03
9.687E-04
7.117E-04
5.236E-04
3.857E-04
2.844E-04
2.100E-04

5.000E-01
4.053E-01
3.171E-01
2.404E-01
1.776E-01
1.291E 01
9.305E-02
6.704E-02
4.854E-02
3.542E-02
2.605E-02
1.930E-02
1.438E-02
1.076E-02
8.085E-03
6.091E-03
4,599E-03
3.480E-03
2.638E-03
2.003E-03
1.523E-03
1.159E-03
8.830E-04
6.735E-04
5.141E-04
3.928E-04

5.000E~-01
3.924E-01
2.959E-01
2.174E-01
1.582E-01
1.156E-01
8.537E-02
6.384E-02
4,823E-02
3.671E-02
2.810E-02
2.160E-02
1.666E-02
1.288E-02
9.987E-03
7.757E-03
6.036E-03
4,704E-03
3.671E-03
2.868E-03
2.243E-03
1.756E-03
1.376E-03
1.079E-03
8.472E-04
6.655E-04

T P(ox) = 1 - P( - ox)
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Table B3.--Universal level crossing frequencies of the non-gaussian

turbulence model longitudinal component for varijous values

of the probability distribution parameter E.

(Graphical presentation of these data is given

in figure 16 on page 74 of this report.)

Nu(xIR)
R

x 0.0 0.5 0.75 1.0 1.33 2.0
0.0 | 1.591E-01 | 1.597E-01 | 1.606E-01 | 1.618E-01 | 1.637E-01 | 1.674E-01
.2 { 1.506E-01 | 1.563E-07 | 1.569E-01 | 1.576E-01 | 1.587E-01 | 1.603E-01
.4 | 1.469E-01 | 1.468E-01 | 1.465E-01 | 1.459E-01 | 1.448E-01 | 1.417E-01
.6 | 1.329E~01 | 1.322E-01 | 1.307E-01 | 1.285E-01 | 1.249E-01 { 1.172E-01
.8 | 1.156E~01 | 1.142E-01 { 1.116E-01 { 1.081E~01 | 1.027E-01 | 9.300E-02
1.0} 9.653E~02 | 9.481E-02 | 9.152E-02 | 8.721E-02 | 8.126E-02 | 7.221E-02
1.2 | 7.747E~02 | 7.564E~02 | 7.221E-02 | 6.796E-02 | 6,262E-02 | 5.595E-02
1.4 | 5.973E-02 | 5.809E~02 | 5.506E-02 | 5.153E-02 | 4.755E-02 | 4,355E-02
1.6 | 4.425E-02 | 4.301E~02 | 4.075E-02 | 3.831E-02 | 3.591E-02 | 3.415E-02
1.8 | 3.150E-02 | 3.077E~02 | 2.944E-02 | 2.815E-02 | 2.717E-02 | 2.691E-02
2.0 {2.154E-02 | 2,133E~02 | 2.088E-02 | 2.057E-02 | 2.063E-02 | 2.128E-02
2,2 | 1.415E-02 | 1.436E-02 | 1.462E-02 | 1.503E-02 [ 1.575E-02 | 1.687E-02
2.4 | 8.934E-03 | 9.432E-03 | 1.017E-02 | 1.102E-02 | 1.207E-02 | 1.339E-02
2.6 | 5.417E-03 | 6.063E-03 | 7.051E-03 | 8.111E-03 { 9.281E-03 | 1.064E-02
2.8 | 3.157E-03 | 3.833E-03 | 4.896E-03 | 5.995E-03 { 7.154E-03 | 8.465E-03
3.0 1.768E-03 | 2.395E-03 | 3.409E-03 | 4.446E-03 | 5.524E-03 | 6.738E-03
3.2 | 9.508E-04 | 1,484E-03 | 2,383E-03 | 3.307E-03 | 4,271E-03 | 5.367E-03
3.4 | 4.916E-04 | 9.164E-04 | 1.672E-03 | 2.465E-03 | 3.306E-03 | 4.276E-03
3.6 | 2.441E-04 | 5.654E-04 | 1,177E-03 | 1.841E-03 | 2.560E-03 | 3.409E-03
3.8 1.166E-04 | 3.496E-04 | 8,310E-04 | 1.376E-03 | 1.984E-03 | 2.718E-03
4.0 | 5.354E-05 | 2.168E-04 | 5.880E~04 | 1,030E-03 | 1.539E-03 | 2.168E-03
4.2 | 2.351E-05 | 1.348E-04 | 4,167E-04 | 7.714E-04 | 1,194E-03 | 1.730E-03
4.4 | 1.004E-05 | 8.425E-05 | 2.959E-04 | 5.782E-04 | 9.265E-04 | 1.380E-03
4.6 | 4.090E-06 | 5.278E-05 | 2.102E-04 | 4.336E-04 | 7.192E-04 | 1.102E-03
4.8 | 1.580E-06 | 3.315E-05 | 1.495E~04 | 3.253E-04 | 5.585E-04 | 8.793E-04
5.0 | 6.109E-07 | 2.089E-05 | 1.064E~04 | 2,442E-04 | 4,338E~04 | 7.020E-04
5.2 | 2.206E-07 | 1.318E-05| 7.581E-05 | 1.833E-04 | 3.370E~04 | 5 605E-04
5.4|7.410E-08 | 8,328E-06 | 5.402E-05 | 1.377E-04 | 2,619E-04 | 4,476E-04
5.6 | 2.668E-08 | 5,274E-06 | 3.852E~05 | 1.034E-04 | 2.035E-04 | 3.574E-04
5.8 | 8.484E-09 | 3.341E-06 | 2.748E-05 | 7.773E-05 | 1,582E-04 | 2.855E-04
6.0 | 2.424E-09 | 2,117E-06 | 1.960E~05 | 5.842E~05 | 1.230E-04 | 2,281E-04
6.2 | 8,545E-10 | 1.344E-06 | 1.399E-05 | 4.392E-05 | 9.563E-05 | 1.822E-04
6.4 | 2.359E-10 | 8.534E-07 | 9.990E-06 | 3.302E-05 | 7.436E-05 | 1.456E-04
6.6 | 5.528E-11 | 5.419E-07 | 7.134E-06 | 2.483E-05 | 5,784E-05 | 1.163E-04
6.8 2.059E-11 | 3.446E-07 | 5.096E-06 | 1.868E-05 | 4.500E-05| 9.301E-05
7.014,792E-12 | 2.191E-07 | 3.641E-06 | 1.405E-05 | 3.502E-05 | 7.439E-05
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Table B4.--Universal level crossing frequencies of the non-gaussian
turbulence model vertical and lateral components for various values

of the probability parameter R.
(Graphical presentation of these data is given in figure 17

on page 80 of this report.)

i (|r) , 8 (x|”)

R
0.0 0.5 0.75 1.0 1,33 2.0

8

o

1.949E~01 | 1.955E-01 ( 1.965E-01| 1.979E-01| 2.000E-01 | 2.042E-01
1.911E-01 | 1.914E-01 | 1.920E-01 .928E-01 | 1.938E-01 | 1.954E-01
1.799E-01 | 1.797E-01 { 1.792E-01 .784E-01 | 1.768E-01| 1.728E-01
1.628E-01 | 1.618E-01 | 1.599E-01 .571E-01 | 1.525E-01 | 1.429E-01
1.415E-01 | 1.399E-01 | 1.366E-01} 1.321E-01 | 1.254E-01 | 1.134E-01
1.182E~01 | 1.161E-01 | 1.120E-01 .066E-01 | 9.924E-02 | 8.806E-02
9.488E-02 | 9.260E~-02 | 8.834E-01| 8.308E-02 | 7.647E-02 | 6.825E-02
7.316E-02 | 7.112E-02 | 6.736E-02| 6.299E-02 | 5.807E-02 | 5.313E-02
5.420E-02 | 5.266E-02 | 4,985E-02 | 4.682E-02 | 4.386E-02 | 4.167E-02
3.857E-02 | 3.767E-02 | 3.601E-02| 3.440E-02 | 3.318E-02 | 3.284E-02
2.638E-02 | 2,611E-02 | 2.554E-02 | 2.514E-02 | 2.520E-02 | 2.598E-02
1.733E-02 | 1.758E-02 | 1.788E-02) 1.838E-02 | 1.923E-02 } 2.059E~02
1.094E-02 | 1.155E-02 | 1.244E-02 | 1.347E-02 | 4.474E-02 | 1.635E-02
6.635E-03 | 7.421E-03 | 8.624E-03| 9.914E-03 | 1.134E-02 | 1.300E-02
3.866E-03 | 4.692E-03 | 5,988E~03| 7.328E-03 | 8.742E-03 | 1.034E-02
2.165E-03 1 2,931E-03 | 4.170E-03 | 5.435E-03 | 6.751E-03 | 8.231E-03
1.164E-03 | 1.816E-03 | 2.914E-03 | 4.043E-03 | 5.220E-03 | 6.556E-03
6.021E-04 | 1.122E-03 | 2.045E-03 | 3.014E-03 | 4.040E-03 | 5.225E~03
2.990E-04 | 6.920E~04 | 1.439E-03 | 2.251E-03 | 3.130E-03 | 4.165E-03
1.429E-04 | 4.279E-04 | 1.016E-03 | 1.683E-03 | 2,426E-03 | 3.322E-03
6.557E-05 | 2,653E-04 | 7.192E-04 | 1.259E-03 | 1.881E-03 | 2.650E-03
2.880E-05| 1.650E-04 | 5.098E-04 { 9.434E-04 | 1.459E-03 | 2.114E-03
1.229E-05 | 1.031E-04 | 3.619E-04 | 7,071E-04 | 1.133E-03 | 1.687E-03
5.009E-06 | 6.460E-05 | 2.572E-04 | 5.303E-04 | 8,794E-04 | 1.347E-03
1.935E-06 | 4.057E-05 | 1.829E-04 | 3.978E-04 | 6.829E-04 | 1.075E-03
7.482E~07 | 2.557E-05 | 1.302E-04 | 2.986E-04 | 5.304E-04 | 8,582E-04
2.702E-07 | 1.614E-05 | 9.275E-05| 2,242E-04 | 4.121E-04 | 6.852E-04
9.075E-08 | 1.019E-05 | 6.610E-05| 1.684E-04 | 3.202E-04 | 5.472E-04
3.267E-08 | 6.455E-06 | 4.713E-05| 1.265E-04 | 2.489E-04 | 4.370E-04
1.039E-08 | 4.089E-06 | 3.362E-05| 9.508E~05 | 1.935E-04 | 3.491E-04
2.968E-09 | 2.591E-06 | 2.399E-05| 7.146E-05 | 1.504E-04 | 2.789E-04
1.047E-09 | 1.645E-06 | 1.712E-05| 5.373E-05 | 1.170E-04 | 2.228E-04
2.890E-10 | 1.044E-06 | 1,222E-05| 4.040E-05 | 9.095E-05 | 1.780E-04
6.774E-11 | 6.633E-06 | 8.729E-06 | 3.038E~-05 | 7.074E-05 | 1.423E-04
2.526E-11 | 4.218E-07 | 6.236E-06 | 2.285E~05 | 5.504E-05 | 1.137E-04
5.911E-12 | 2.682E-07 | 4.455E-06 | 1.719E-05 | 4.283E-05 | 9.098E-05
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